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Abstract:  

Trend events reveal long-term changes in time series data and help capture long-term pattern shifts. Lag coefficients, on the 

other hand, focus on the impact of past events on the present or future, helping to uncover time delays and causal relationships. 

In time series association rule discovery, considering trend events and lag coefficients can enhance the model's predictive power 

and provide more accurate decision support, particularly in fields such as finance, market analysis, and epidemiology. Both of 

these factors are key elements for effective modelling and rule mining, and are crucial for extracting meaningful time series 

patterns. This paper analyses those key challenges and introduces a new approach to solve these problems by constructing trend 

events and solving for lag coefficients. Based on this approach, some algorithms are proposed to improve classic association 

rule discovery method. The experiment with PM2.5 data set proves the effects of discretization of trend event and shows the 

hidden frequency pattern considered lag coefficient. This research represents a meaningful attempt to improve the effect of 

association rules discovery within multiply time series. 
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INTRODUCTION 

Trend events typically refer to the occurrence of specific patterns or trends in a time series. They reflect long-term upward or 

downward trends in the data, or periodic fluctuations. These events are crucial for mining association rules in time series, as they 

can reveal key patterns of change and help predict future trends. The association rule discovery study, as an important area of 

data mining, usually focus on exploring the implicit and interesting relationships among transactions. Time series association 

rule discovery methods are primarily used to identify meaningful, time-ordered associations present in time series data. By 

analysing data at different time points, researchers can uncover potential patterns and trends, which can then be applied in 

decision-making. The research on pattern recognition in time series data began with Agrawal's introduction of the Generalized 

Sequential Pattern (GSP) mining method [1]. Related research has been ongoing, with Han et al. proposing the Free Span 

algorithm in 2000 [2], Pei introducing the Prefix Span algorithm in 2001 [3], which outperforms GSP and mining sequential 

patterns [4], and Zaki presenting the SPADE algorithm in the same year [5]. Harms and others proposed the MOWCATL 

algorithm for frequent pattern mining in multiple sequences, marking the first attempt to address the lag phenomenon 

encountered when discovering frequent patterns in multiple sequence data [6]. Rad and Sun identified lag by defining cross-

correlation functions, while Yang Ren et al. [7] used the nonlinear least squares method to identify higher-order systems with 

delays. In 2016, Cai and others proposed a multi-time series association rule mining algorithm [8] that considers the distribution 

characteristics of the consequent. It is evident that after many years of research, association rule discovery algorithms have 

gradually expanded to cover time series data, but they have not yet achieved the same level of breadth and depth as traditional 

transactional data. 

Compared to other transactional data, time series data has typical characteristics, the most important of which is the clear 

sequential relationship between all data nodes. According to the Markov principle, in a single entity sequence, the preceding 

node has a crucial influence on the subsequent node. In multiple entity sequences, there may be a connection between the 

antecedent of one entity and the consequent of another sequence. This characteristic presents challenges for research in 

association rule discovery on multiple time series data but also offers insights, suggesting that by incorporating some theories 

and findings from time series analysis, time series data can be transformed to construct new data structures suitable for classic 

association rule discovery algorithms. 

One school of thought in time series research views sequence data from a trend perspective. Williams first proposed the general 

concept of segments in the field of qualitative reasoning in 1986[9], and in 1990, Cheung and Stephanopoulos formally 

introduced a trend description language known as “primitivers” [10]. Subsequent research on the feature representation of time 

series has developed into major schools of thought such as non-adaptive methods, adaptive methods, and model-based methods. 

Gao and Gu proposed a trend recognition method that converts each node in the sequence data into a polynomial function, 
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transforming longer time series data into a collection of functions with business significance, providing a new approach and 

method [11]. 

Based on the aforementioned research results, this paper introduces the methodology of trend knowledge discovery into the 

research of association rule discovery in time series data. It fully considers the impact of the lag phenomenon and proposes a 

method to expand the scope of frequent pattern recognition by calculating the optimal lag coefficient. Considering trend events 

and lag coefficients can significantly improve the accuracy of predictive models, especially when forecasting market demand, 

customer behaviour, and economic changes. Through in-depth analysis of time series data, managers can make more precise 

predictions, thereby optimizing resource allocation and strategic planning. Through in-depth analysis of trend events and lag 

coefficients, companies can gain a competitive edge in a fiercely competitive market, predict competitors' behaviour, and make 

corresponding adjustments. Especially in fast-paced industries such as technology and consumer goods, trend analysis and the 

management of lag effects can help companies maintain their market leadership. 

In the field of management, trend events and lag coefficients in time series association rule discovery have significant theoretical 

and practical implications. Trend events provide managers with tools to identify and predict long-term trends, while lag 

coefficients help managers understand the delayed effects and causal relationships of decisions. When combined, both can 

significantly enhance the accuracy and foresight of decision-making, helping companies make more scientific and efficient 

decisions in complex and uncertain environments. 

Therefore, this paper's research has expanded the ideas and methods of association rule discovery on time series data. The method 

of using trend events to complete data dimensionality reduction is a lossless dimensionality reduction without losing the key 

features of the sequence data. It is A useful attempt to balance computational cost and algorithm accuracy. 

CONCEPTS AND ALGORITHMS 

Time Events and The Discretization of Time Series 

Discretization is the process of converting continuous-time signals into discrete-time ones, which commonly occurs in fields 

such as signal processing, statistics, and machine learning. During discretization, factors such as sampling rate, time step size, 

and how to handle events with different time intervals need to be considered [12]. Many traditional methods have been proposed 

to address the core issue of discretizing continuous time series data [13]. These methods include the equal-width interval method, 

the equal-frequency interval method, and the interval merging method, and many others. Some researchers provide a survey of 

event-driven time series forecasting methods, exploring how to extract useful information from time series with irregular event 

occurrences and model and predict them. The processing of event data has become an important research topic, especially in 

fields such as finance, healthcare, and the Internet of things. A generalized framework is proposed to handle event-driven time 

series data, and a systematic analysis of modelling discretized time series is provided. It offers a methodology to address how to 

convert irregular time events into discrete time series. Regardless of the method employed, each is based on the original value 

range of the data and performs certain divisions, thereby possessing inherent limitations. For instance, the equal-width interval 

method assumes that every possible value of the data contributes equally to the association rules; whereas the equal-frequency 

interval method struggles to handle new data points that fall outside the current distribution of existing data. 

In recent years, some scholars have redefined the concept of “trend” as a polynomial function representation of the stable and 

predictable components within time series data. By segmenting time series data into multiple trend functions, different nodes 

within a continuous time series can be distinguished as either trend components or noise components. By discarding the noise 

nodes and retaining the trend nodes, and then replacing the data nodes with trend functions in the original sequence order to 

construct a trend sequence, significant dimensionality reduction and noise reduction in high-dimensional time series data can be 

achieved. 

Many traditional methods have been proposed to address the core issue of discretizing continuous time series data. These methods 

include the equal-width interval method, the equal-frequency interval method, and the interval merging method, and many others. 

Regardless of the method employed, each is based on the original value range of the data and performs certain divisions, thereby 

possessing inherent limitations. For instance, the equal-width interval method assumes that every possible value of the data 

contributes equally to the association rules; whereas the equal-frequency interval method struggles to handle new data points 

that fall outside the current distribution of existing data. 

Trend Events: If a time series 𝑆 =< 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 > can be represented by a trend series < 𝑇1, 𝑇2, ⋯ , 𝑇𝑚 >, in which 𝑇𝑖  is 

constructed by nodes between 𝑝𝑎 and 𝑝𝑏  , then 𝑇𝑖  is a trend event on 𝑝𝑐 , 𝑝𝑐 ∈ [𝑝𝑎 , 𝑝𝑏]. 
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According to the concept of trend sequences, all data nodes in a specific sequence can be mapped to one or more trend events, 

i.e., the sequence 𝑆 =< 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 > can be transformed into 𝑆𝑇 =< {𝑇1}, {𝑇2}, ⋯ , {𝑇𝑛} > , where {𝑇𝑖} is the set of all trends 

at a specific node.  

However, the trend event sequence constructed through this transformation does not significantly reduce the dimensionality 

compared to the original sequence. The job is done with trend clustering. At this point, clustering of trend events is used to reduce 

the numerous trends to a few typical trends. Specifically, hierarchical clustering is used to summarize the trends into several 

clusters, and then the cluster labels replace all the trend events, thereby as follows Table 1: 

Table 1. Algorithm to discretise trend events sequence 

IN: Trend Events Sequence TS. 

OUT: Discretized Trend Event Sequence TS’. 

1) create an empty matrix dist with same amount of rows and columns as TS; 

2) get 𝑇𝑖 from TS; 

3) get 𝑇𝑗 from TS, 𝑖 < 𝑗 ≤ length (TS); 

4) set dist (i, j) = MWD(𝑇𝑖 , 𝑇𝑗); 

5) if j=length (TS), goto 6), else goto 3); 

6) if i=length (TS), goto 7), else goto 2); 

7) do hierarchical clustering on TS according to dist, and mark with A, B, C...; 

8) create a new sequenct TS” with the same length as TS; 

9) get 𝑇𝑖 from TS; 

10) add a symbol from step 7) to TS’(i); 

11) save TS’, and quit. 

Compared to traditional methods, the dimensionality reduction approach involving the introduction of trend functions does not 

simply segment the original sequence. Instead, it transforms and reconstructs the sequence based on the inherent developmental 

characteristics embedded within the data. The dimensionality reduction effect is thus highly significant. Furthermore, in the 

process of constructing trend events, the original sequence is effectively piecewise fitted, laying a solid foundation for subsequent 

computations, classifications, and predictions. 

Lag Coefficients in Time Series Association Rules Discovery 

In traditional transactional association rule discovery, the sequence of transactions is generally not considered, or the window 

used to determine the correlation between transactions is very small. When it is necessary to identify frequent patterns among 

multiple time series data, there is a possibility that related antecedents and consequents occur asynchronously, a phenomenon 

known as "lag." Due to the impact of the lag phenomenon, traditional association rule discovery methods, when applied to time 

series data, might miss important frequent patterns. 

In the research of association rules discovery from multiple time series, the transactions are no longer boolean as default but with 

particular length with start point and end point so that the relationship between antecedents and consequents can be summarized 

into four cases as shown in the Figure 1. The type marked as (a) represents that a consequent starts after the antecedent totally 

finished. The traditional study on single time series frequency patten discovery usually work on this type of data. The type 

marked as (b) shows a data type in which a consequent starts before the antecedent finished. Type (c) is a special type that the 

antecedent and the consequent start and finish at the same time, in a word, they coincide, which is common in traditional 

association rules discovery study. The last type marked as (d) shows a much more special kind of data, in which the consequent 

starts after the antecedent stars but finishes before it finishes, which means the consequent is in the antecedent. In the four types, 

(b) and (d) are overlooked by the traditional study or they are difficult to solve with classic algorithms. 

 

Figure 1. Typical time lag cases 
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In the research of association rule discovery in time series data, theoretically, a trend antecedent can influence a trend consequent 

infinitely far in the future. However, this characteristic has no practical significance for solving real-world problems and only 

increases computational complexity. For time series association rule mining, the influence of the antecedent on the consequent 

should be confined to a certain interval. Beyond this range, it can be assumed that there is no correlation between the two 

transactions. Algorithms such as MOWCATL consider this lag phenomenon between data and provide feasible solutions for 

association rule discovery under this premise. However, they do not discuss how to determine an optimal effective window range 

for the association. In this paper, this range is defined as the lag coefficient. 

Lag Coefficients：For any trend 𝑇 =  (𝑎, 𝑏, 𝑀(𝑥)) in a sequence, when it is used as the consequent of an association rule, any 

trend that is related to the development and change process of this trend can be represented as 𝑇’ = (𝑎’, 𝑏’, 𝑀’(𝑥)), in which a′ ∈

[a − τ, a], b′ ∈ (a′, b + τ), the τ is the lag coefficient of trend T. 

The fact that one trend is within the lag interval of another trend does not necessarily imply a correlation between the two trends. 

Being within the lag interval is a necessary but not sufficient condition for the existence of a correlation between two trends. 

The selection of the lag coefficient is highly flexible. To improve computational efficiency and avoid endless iterations, this 

paper suggests that the optimal lag coefficient can be determined by combining both subjective and objective methods. 

Subjectively, the specific business context of the time series data should be considered. For example, if the data is monthly, the 

upper limit for calculating the lag coefficient can be set to 12, and for quarterly data, the upper limit can be set to 4, and so on. 

Based on the subjectively set upper limit, the possible lag coefficients between any two sequences can be further solved by 

iteration, and the optimal lag coefficient can then be obtained by calculating the average value. 

Thus this paper proposed an algorithm whose steps is described as follows Table 2: 

Table 2. Algorithm to calculate the best lag coefficients 

IN: Trend Events Sequence TS1 and TS2; 

Max lag coefficient τmax. 

OUT: Best lag coefficients τ. 

1) get a trend T1 = (a1, b1, M1(x)) from TS1; 

2) create a new list Sτ, set mwd=0, τtmp=0; 

3) get a trend T2 = (a2, b2, Mx(x)) from TS2; 

4) if a2 < a1 − τmax, and b2 > b1 + τmax, set τtmp = τmax ,and add to Sτ; 

5) if a1 − τmax ≤ a2 < a1, and b2 ≤ b1 + τmax, go to 6), else go to 3); 

6) if |MWD(T1, T2)| > mwd, set mwd = |MWD(T1, T2|) , and go to 7); 

7) if a1 < a2 ∧ b1 < b2, then set τtmp = a1 − a2; 

8) if a1 > a2 ∧ b1 < b2, then set τtmp = max(a1 − a2, b2 − b1); 

9) add τtmp to Sτ, 

10) if more trend left in TS2, go to 3), else go to 11); 

11) if more trend left in TS1, go to 1), else go to 12); 

12) set τ = ⌈Sτ̅⌉ 
13) save τ, and quit. 

After obtaining the optimal lag coefficient, it can be used to compare all transactions, marking them as T (True) or F (False), 

thereby achieving the binarization of time series data. 

EXPERIMENTS  

Dataset and Pre-Processing Steps 

(1) In this paper, we select the publicly available dataset "PM2.5 Data of Five Chinese Cities" from UCI, which includes PM2.5 

and related meteorological data for five cities: Beijing (BJ), Shanghai (SH), Guangzhou (GZ), Chengdu (CD), and Shenyang 

(SY). 

(2) Due to the presence of a large number of missing values in the original dataset and the enormous scale of the data, some 

preprocessing is necessary. The key steps of preprocessing in this paper include: 

(3) Only considering data from January 1, 2014, onwards to avoid the issue of numerous missing values in the earlier data. 

(4) Using only the data released by the U.S. Embassy in the five cities as samples to ensure consistent data accuracy. 

(5) Retaining only the daily data recorded at 12 AM to reduce the data scale and enhance computational efficiency. 
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(6) Removing all dimensions where the data is entirely zero to reduce interference. For the dimensions "precipitation" and 

"iprec," which contain a large number of zero values, manually transforming them into two values, "0" and "non-0," to achieve 

discretization. 

Key Steps and the Result of the Algorithms 

After completing the preprocessing, the first step of the experiment is to conduct trend identification to construct trend sequences. 

Using the trend identification algorithm proposed by Gao and Gu, most dimension sequences are set with an error threshold of 

0.2. For HUMI, due to the particular nature of the data, the threshold is set at 0.05. The basic situation of the dataset used to test 

the algorithm in this paper is shown in the Table 3 after processing. 

Table 3. PM2.5 Data of Five Chinese Cities Data after pre-Process 

City Amount of Affairs 
Amount of Trend 

PM2.5 DEWP TEMP HUMI PRES IWS 

BJ 685 93 179 151 148 256 56 

CD 647 132 250 192 136 287 75 

GZ 695 132 428 293 107 433 86 

SH 1004 152 309 282 111 503 106 

SY 600 76 127 146 81 208 55 

We focus on PM2.5 data, thus setting it as the target dimension for constraint, specifically as the sole consequent in association 

rules. All dimensions undergo trend clustering, and using the cluster labels as trend events, each dimension is transformed into 

a boolean dataset of trend events. 

Continuing with the processed dataset mentioned above, considering it is daily data, a maximum lag coefficient of 7 is chosen. 

For association rule discovery, a support threshold of 0.1 and confidence threshold of 0.5 are applied. The classic Apriori 

algorithm is then used to obtain association rules. Due to the large number of rules generated, to save space, only the top 5 rules 

from each city's results are listed in the Table 4. 

Table 4. Top Rules Discoverd in Each City 

City lhs rhs supp coefi lift count 

BJ 

{pres-4, temp-7} pm-6 0.1051 0.9118 2.2414 31 

{humi-10, pres-4, temp-7} pm-6 0.1051 0.9118 2.2414 31 

{pres-1, pres-4, temp-7} pm-6 0.1051 0.9118 2.2414 31 

{humi-10, pres-1, pres-4, temp-7} pm-6 0.1051 0.9118 2.2414 31 

{pres-4, SE, temp-7} pm-6 0.1017 0.9091 2.2348 30 

CD 

{humi-13, humi-16, pres-5, SW} pm-13 0.1057 0.7167 4.0512 43 

{humi-13, humi-15, humi-16, pres-5, SW} pm-13 0.1057 0.7167 4.0512 43 

{humi-13, humi-16, humi-6, pres-5, SW} pm-13 0.1057 0.7167 4.0512 43 

{humi-13, humi-16, humi-2, pres-5, SW} pm-13 0.1057 0.7167 4.0512 43 

{humi-13, humi-16, humi-8, pres-5, SW} pm-13 0.1057 0.7167 4.0512 43 

GZ 

{dewp-10, dewp-4, dewp-9, pres-4} pm-12 0.1042 0.7018 3.2863 40 

{dewp-10, dewp-4, dewp-5, dewp-9, pres-4} pm-12 0.1042 0.7018 3.2863 40 

{dewp-10, dewp-2, dewp-4, dewp-9, pres-4} pm-12 0.1042 0.7018 3.2863 40 

{dewp-10, dewp-4, dewp-9, humi-16, pres-4} pm-12 0.1042 0.7018 3.2863 40 

{dewp-10, dewp-4, dewp-9, humi-18, pres-4} pm-12 0.1042 0.7018 3.2863 40 

SH 

{dewp-1, humi-12, lws-1, pres-3} pm-5 0.1011 0.8689 1.8813 53 

{dewp-1, humi-12, lws-1, pres-2, pres-3} pm-5 0.1011 0.8689 1.8813 53 

{dewp-1, humi-12, lws-1, NE, pres-3} pm-5 0.1011 0.8689 1.8813 53 

{dewp-1, humi-11, humi-12, lws-1, pres-3} pm-5 0.1011 0.8689 1.8813 53 

{dewp-1, humi-12, lws-1, pres-1, pres-3} pm-5 0.1011 0.8689 1.8813 53 

SY 

{NW, SE, SW} pm-2 0.1137 0.5 1.4655 29 

{NW, pres-1, SE, SW} pm-2 0.1059 0.5 1.4655 27 

{dewp-5} pm-1 0.1098 1.0 1.4167 28 

{dewp-2} pm-1 0.1255 1.0 1.4167 32 

{dewp-3} pm-1 0.1333 1.0 1.4167 34 

 

EXPERIMENTS RESULT ANALYSIS 

From the above results, it is evident that each of the five cities exhibits distinctive factors related to PM2.5, and the implicit 

correlations also reflect typical regional characteristics.  
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Among the five cities, Beijing has a temperate monsoon climate and is significantly affected by air pressure, temperature and 

humidity. In contrast, Shanghai is located in the subtropical estuary of the Yangtze River, which has more prominent oceanic 

characteristics. At this time, if the air pressure is low and the wind speed is fast, PM2.5 will be less likely to accumulate. Chengdu 

is located in an inland basin, and the humid climate makes the wind direction and wind speed relatively stable. The factors that 

have the greatest impact on PM2.5 are humidity and air pressure, which determine precipitation. Guangzhou is more like a 

combination of Shanghai and Chengdu. As a tropical coastal city, the dew point indicator that reflects the balance of moisture 

and temperature in the air is the most important for Guangzhou. The most special of all cities is Shenyang, which has the highest 

latitude and the lowest average temperature. It should be significantly affected by factors such as air pressure, but this is not the 

case. Due to the humid water vapor brought by the monsoon in the Bohai Bay, Shenyang's PM2.5 performance becomes similar 

to that of Guangzhou, and the dew point plays an important role. 

The analysis above shows that in practical applications, it is crucial to analyze each specific situation to identify the primary 

influencing factors effectively, thereby achieving the goal of controlling and adjusting PM2.5 levels. 

At the same time, the results of the experiment demonstrate that through the methods presented in this paper, hidden association 

rules in time series data can be successfully identified, indicating both theoretical and practical significance. 

CONCLUSION 

This paper re-examines the problem of association rule discovery on time series data from the perspective of trend knowledge 

discovery. It introduces the concept of trend events to discretize continuous sequence data and fully considers the unique lag 

issues faced when conducting association rule discovery on time series data. By solving for the optimal lag coefficient, it further 

discretizes the sequence data, enabling traditional association rule discovery algorithms to operate effectively. Experimental 

validation on publicly available datasets demonstrates the feasibility of the proposed method and its capability to represent real-

world problems. This work represents a beneficial attempt in the research of association rule discovery algorithms. 

However, the research method given in this article has high computational complexity and high computational cost, and the 

results obtained also have a certain degree of ambiguity. When making specific interpretations and explanations, the business 

background of the research needs to be fully considered in order to be more convincing conclusion. On the other hand, the trend 

discovery of sequence data is the basis of this article, but the effect of trend identification is closely related to the sampling 

frequency of sequence data. How to balance the computational complexity and algorithm accuracy to achieve dynamic and 

automatic analysis granularity determination will It is one of the important research directions in the future. 
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