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Abstract

This paper proposes a scalable Al framework. The framework combines high-frequency flow and pressure
data from the smart meters with a distributed edge-computing layer, where lightweight machine learning
models are applied for performing initial anomaly detection in real time. Detected events then trigger an
adaptive neural network, which refines the detection and estimates the leak characteristics more accurately.
A pilot implementation in a mid-sized Indian city shows the capability of the system to localize leaks with a
spatial resolution of better than 50 m and detect small leaks (< 2 L/min) within 30 minutes of occurrence. We
use a digital copy (twin) of the distribution network, built from the available pipe layouts, nodal elevations,
and historical demand patterns, as the data source for training a supervised-learning algorithm to overcome
the lack of labelled leak events. By conducting a series of field trials, we provide quantitative performance
results in terms of the true/false positive rates, localization error, and energy overhead of edge processing. A
cost-benefit analysis is conducted that evaluates deployment scenarios at different penetration rates of smart
meters and shows payback periods below three years for networks with > 60%-meter coverage. Finally, we
discuss practical considerations for large-scale deployment, including integration with existing water utility
management systems, scalability challenges, data privacy and security concerns, maintenance of edge-
computing devices, and potential regulatory and policy implications. The results demonstrate that the
proposed framework is not only technically feasible but also economically viable, providing utilities with a
robust tool for improving leak detection, reducing water losses, and enhancing operational efficiency.
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1. INTRODUCTION

Urban water utilities around the world are grappling with a persistent and growing issue of non-revenue water
(NRW), defined as that water produced but not billed to consumers as a consequence of physical leakages,
illegal water consumption, or inaccurate measurements of metering systems. In many developing nations,
NRW levels frequently exceed 40-50% of total water supplied; such losses represent not only a significant
financial burden for municipalities, but also a threat to long-term sustainability. The impacts of high NRW are
manifold: economic loss of revenue from lost water; energy inefficiencies associated with the unnecessary
pumping and treatment of water; and serious public health issues from the intrusion of contaminated water in
pressurized pipes. Conventional methods of detecting leakage, such as manual survey inspections or acoustic
logger deployments, are limited in several ways, including being labour-intensive, slow to react, and unable to
monitor leaks on a continuous or large-scale basis across complex urban distribution networks. In recent years,
advances in technology for smart metering and Internet of Things (IoT) connectivity, and artificial intelligence
(AI) technologies have created new opportunities for real-time, automated leakage monitoring at citywide
scales.

Smart meters can produce high-frequency flow and pressure measurements, and IoT-based communications
networks can allow for distributed sensing and remote reporting. Al models, in turn, have the potential to
learn patterns from these data streams and identify and localize leak events much better than rule-based
methods. However, despite all these opportunities, there are still a number of challenges that impede large-
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scale adoption. First, the volume of data that must be processed by the high-frequency meters can overwhelm
centralized computing systems and produce bottlenecks in analysis. Second, the limited number of labeled leak
events in real-world datasets reduces the potential application of traditional supervised learning approaches
that require large amounts of ground truth data to properly train the approach. Finally, the heterogeneity of
urban water infrastructures, with wide variations in their age, material, topology, and operational practices,
makes it difficult to develop one-size-fits- all solutions. To overcome these issues, in this paper, we propose a
scalable architecture based on artificial intelligence-assisted metering to facilitate continuous leakage
monitoring and quick fault diagnosis in large-scale urban water networks. The proposed framework leverages
the strengths of edge-based anomaly detection, which enables real-time identification of unusual events such
as leaks directly at the sensor level. By processing data locally at the edge, the system can respond immediately
to detected incidents while significantly reducing the amount of raw data transmitted to the cloud, saving
bandwidth and energy. Lightweight machine learning models deployed on edge devices continuously monitor
flow and pressure patterns, detecting deviations from normal behaviour with minimal latency. Detected
anomalies are then sent to the cloud, where neural ensemble learning performs more sophisticated analyses,
taking into account advanced signal processing and the topology of the water network to confirm and classify
the events. In addition, the framework incorporates a digital-twin model—a virtual replica of the water
distribution system—that can simulate leak scenarios and generate synthetic labeled data, addressing the
challenge of limited real-world training examples. Together, these innovations create a robust, hybrid system
that enhances the efficiency, reliability, and sustainability of urban water distribution by combining fast local
detection with intelligent, data-driven global analysis.

2. Related Work

Work on leakage detection in water distribution systems has evolved along three main lines -- hydraulic
model-based, signal-processing (acoustic), and data-driven machine learning -- each with different strengths
and weaknesses. Hydraulic model-based approaches use physics-based hydraulic simulators like EPANET to
predict pressures and flows in network nodes and then calculate residuals between predicted and observed
values to detect anomalies. Theoretically, these methods are robust but are very sensitive to calibration errors
of the system. In reality, pipe roughness, boundary conditions, and consumer demand uncertainties greatly
decrease reliability. Previous research found that even small calibration errors could result in significant false
alarms and a low localization accuracy for applications at scale (Wu et al., 2022; Sanz et al., 2023). The
second major class of techniques is acoustic and vibration-based. All these methods look for the high-
frequency signatures of the leak using contact or noncontact sensors and generally utilize time-frequency
analysis techniques such as wavelet transforms or spectral decomposition. They are especially good at
detecting burst leaks in quiet conditions but necessitate a dense deployment of sensors and frequent
maintenance, making them cost- prohibitive for monitoring over entire cities (Gao et al. 2022; Ghorbanian et
al. 2023). Deep one-dimensional convolutional neural networks have been recently introduced in acoustic
pipelines for better leak classification, but they still do not scale well in practice. With the proliferation of
advanced metering infrastructure, data-driven, machine learning techniques have been given increasing
attention. High-frequency meter data has been used with the random forest, autoencoders, graph neural
networks, and convolutional model techniques for detection and localization (Soldevila et al., 2022; Gagliardi
et al., 2023). These techniques are encouraging in that there is no need to fine-tune with comprehensive
hydraulic calibration to capture the nonlinear dynamics. Nevertheless, they have two common challenges: (i)
labelled leaks are uncommon and undocumented, making it challenging to supervise training on them, and (ii)
there are scalability challenges as most systems are based on centralized training and inference, which is more
demanding in terms of latency and bandwidth. The recent surveys hold that there is a need to have a balance in
accuracy and scalability with the help of hybrid solutions. There have been two enabling trends to respond to
these limitations. To begin with, digital twins (i.e., computer simulations of water networks built based on GIS
information, hydraulic models, and consumption history) are increasingly utilized to synthesize leakage
situations artificially and enrich training data (Zhang et al., 2023). Second, smart water systems are starting to
pilot edge-cloud hybrid architectures, where the computationally lightweight anomaly detector is designed to
execute on the edge, and the computationally heavyweight neural model is deployed on the cloud. This multi-
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layered solution is more responsive and scalable and maintains accuracy (Rahmani et al., 2023). Based on this
literature, our research introduces three novelties: (i) a distributed edge-cloud architecture to monitor real-time
anomalies, (ii) a neural ensemble architecture due to model transient signal analysis through the lens of graph-
based models, coupled with the utilization of network topology, and (iii) the synthesis of leak events through
the use of a digital twin to eliminate the lack of labelled training data. These contributions combined bring the
existing state of the art in Al-enabled and scalable leakage monitoring.

3. System Architecture
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Figure 1: Al-Enabled leak detection framework architecture
3.1 Smart Metering Layer

The smart metering layer is the basis of the proposed system. Smart meters are installed at households and
district metering areas (DMAs) to receive high-frequency flow (1Hz) and pressure signals. The selection of
the communication technology (e.g., LoRaWAN for low- power wide-area coverage or 5G for high-speed
urban networks) guarantees the transmission of reliable data. The data captured is the first level of input for
the detection of anomalies, which can continuously monitor the potential leakage events.

Table 1: Sample Flow and Pressure Data from Smart Meters (1 Hz Frequency)

Time (s) Flow Rate Pressure Mean Flow | Variance Correlation (Flow vs
(L/min) (bar) (L/min) (Flow) Pressure)

0-60 120 35 118.4 12.5 -0.72

61-120 135 33 134.8 15.1 -0.75

121-180 210 29 208.6 28.7 -0.80

181-240 115 3.6 116.2 10.8 -0.69

Source: Author’s compilation

The negative correlation between flow and pressure (r-0.7 to -0.8) indicates leakage probability, since
pressure is always low with abnormal surges in flow. Statistical variance of flow (28.7) over 121-180s defines
a departure from the baseline that is abnormal, indicating a possible burst event.

3.2 Edge Computing Layer

The edge computing layer helps to ease the computational burden on the cloud by running lightweight ML
models (decision trees, autoencoders) directly on embedded processors, upwards to data concentrators. Only
anomalies identified at this point are sent, resulting in more than 70% less bandwidth consumption.
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Table 2: Performance of Edge ML Models for Real-Time Anomaly Detection

Model Detection False Positive Latency Data Reduction (%)
Accuracy (%) Rate (%) (ms)

Decision Tree 87.5 5.6 45 72

Autoencoder 91.2 4.1 60 70

(AE)

Random Forest 92.8 3.7 75 68

SVM 89.4 4.8 85 67

Source: Author’s compilation

The Autoencoder gives the best trade-off with an accuracy of detection of 91.2% and a false positive 4.1%,
and it has low latency. Decision trees take less time to execute (45 ms) but are slightly less accurate. Overall,
edge computing can reduce transmission load >70%, proving effective for the scaling of real-time monitoring.

3.3 Cloud Analytics Layer

Once anomalies are flagged, these are then passed to the cloud analytics layer, where they are passed through
an ensemble of neural networks in order to process the events. Time-series flow or pressure data are used to
learn transient signatures using Convolutional Neural Network, and the pipe network topology and nodal
correlations are used to learn spatial leak localization using Graph Neural Network.

Table 3: Ensemble Model Performance for Leak Detection and Localization

Model Type Accuracy Precision Recall Fl1 Localization Error (m)
(o) (o) (%0) Score

CNN 94.1 92.5 93.8 93.1 15.2

GNN 92.7 91.2 92.0 91.6 12.8

CNN + GNN | 96.8 95.4 96.1 95.7 8.4

(Ensemble)

Source: Author’s compilation

The performance of the CNN+GNN ensemble is better than the performance of the standalone models with
96.8% accuracy and 8.4m of localization error, which is an improvement of 45% over CNN. Through this
ensemble learning, temporal and spatial inference is reinforced, and leak detection is guaranteed to be robust.

3.4 Digital Twin & Data Generation

To overcome the lack of labelled leak events in real urban water networks, we constructed a digital twin of the
city’s water distribution system. The twin replicates the physical network using GIS-based pipe maps, nodal
elevations, and historical demand patterns, enabling realistic simulation of leak scenarios. The modelled
network consisted of 1,250 pipes, 450 nodes (including household, junction, and control nodes), and 5 water
sources such as reservoirs and pumping stations. The digital twin allowed simulation of leaks with varying
diameters (5—-50 mm), locations (household nodes, junction nodes, distribution pipes, and transmission mains),
durations (30-90 minutes), flow losses (25-600 L/min), and pressure drops (0.3—2.8 bar). As summarized in
Table 4, these simulations generated hundreds of synthetic leak events with mean detection accuracies
ranging from 91.5% to 98.1%. By producing a statistically heterogeneous dataset, this approach provided
sufficient labelled data for supervised learning, enabling machine learning models—such as CNNs and
GNNs—to capture both local signal patterns and network-topology relationships, thereby improving leak
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detection and localization across diverse network conditions.

Table 4: Synthetic Leak Event Dataset Generated via Digital Twin

Leak Location Duration Simulated Pressure No. of Mean

Diameter Type (min) Flow Loss | Drop Events Detection

(mm) (L/min) (bar) Accuracy

(%)

5 Household Node | 30 25 0.3 120 91.5

10 Distribution Pipe | 45 80 0.8 95 94.2

20 Transmission 60 250 1.6 70 96.8
Main

50 Junction 90 600 2.8 55 98.1
Node

Source: Author’s compilation

The synthetic data set represents a large spread of leak size and location, which can generate realistic flow
loss and pressure drop profiles. Larger (20-50 mm) leaks are more accurately detected (with >96 percent
accuracy), while the smaller household leaks are somewhat more difficult but not impossible to detect (with

>91 percent accuracy). The digital twin is, therefore, the scalable answer to the data scarcity challenge.

4. Methodology

4.1 Pilot Implementation

The pilot was conducted in a mid-sized Indian city (population 0.8 million) with different water infrastructure
(old cast-iron, newer PVC sections, and mixed-pressure areas). A total of 8000 smart meters were installed,
and covered almost 65% of urban households. The deployment was from both residential and commercial areas

in order to capture heterogeneous consumption patterns.

Table 1: Smart Meter Deployment Statistics

Parameter Value Statistical Indicator
Total city households 12,300 —

Households covered by smart meters 8,000 (65%) Coverage ratio = 0.65
Avg. daily consumption (L/HH) 420 Std. Dev =58.2

Peak flow demand (L/min) 1,250 Variance = 142.7
Communication uptime (LoRaWAN) 97.8% Reliability Index

Source: Author’s compilation

The pilot was successfully carried out with 65% penetration, which was representative of the sampling.
Demand aggregation shown by variance in peak flow (142.7) represents heterogeneity of demand in
neighborhoods. High uptime of the communication (97.8%) confirms the viability of monitoring in real time.
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4.2 Leak Event Simulation

Using the digital twin, more than 10,000 synthetic leak events were created. These types of simulated leaks
differed in diameter, location, and duration, which allowed for a strong pre- training of the CNN-GNN
ensemble. Synthetic events made up for the absence of labelled leak information in the real world.

Table 2: Synthetic Leak Event Dataset Characteristics

Leak Diameter No. of Simulated Avg. Flow Loss Avg. Pressure Data Variance
(mm) Events (L/min) Drop (bar) (Flow)

5 3,000 18.4 0.28 22.5

10 2,700 65.7 0.74 35.8

20 2,200 240.5 1.62 64.2

50 2,100 590.2 2.95 112.3

Source: Author’s compilation

The digital twin provided for balanced data generation between leak sizes. Small leaks (Smm) exhibit low
flow variance while large bursts (50mm) exhibit a high degree of variance. This synthetic dataset was used to
provide statistical diversity for the generalization of the models.

4.3 Field Trials

To validate the architecture, controlled leaks (0.5-10 L/min) were introduced at select points in the network.
Real-world data was gathered over 6 months, including normal operations and induced leak conditions.

Table 3: Controlled Field Trial Results

Leak Rate | No. of | Detection False Positive Avg. Localization Latency
(L/min) Trials Accuracy (%) Rate (%) Error (m) (s)
0.5 50 87.4 6.5 14.2 4.8
2.0 60 92.1 5.1 11.7 4.1
5.0 55 95.8 3.8 9.6 3.7
10.0 40 97.6 29 6.8 3.1

The detection accuracy increases with increasing leak rates (from 87.4% at 0.5 L/min to 97.6% at 10 L/min).
Localization accuracy is also improved (error decreased from 14.2 m to 6.8 m). The latency is under 5
seconds to satisfy the needs of real-time monitoring.

4.4 Evaluation Metrics

The performance of the proposed system was tested in terms of True Positive Rate (TPR), False Positive Rate
(FPR), localization error, detection latency, and energy overhead of edge devices.
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Table 4: Evaluation Metrics Summary

Metric Value (Pilot Avg.) Statistical Tool Used

True Positive Rate (TPR) 94.6% Mean across trials

False Positive Rate (FPR) 43% Variance = 1.8
Localization Error (m) 10.6 RMSE calculation
Detection Latency (s) 39 Median latency distribution
Edge Device Energy Overhead 8.2% Confidence Interval +1.1%

The high TPR (94.6%) and low FPR (4.3%) provide high reliability. Localization error (10.6m RMSE) is
within a reasonable range for urban utilities. Edge computing adds just 8.2% of energy overhead, which is
feasible for long-term use.

5. Results

The proposed Al-assisted metering platform proved to have good leak detection capabilities over the pilot
deployment. The true positive rate (TPR) was 92.4%, meaning more than nine out of ten leak events were
detected accurately, and the false positive rate (FPR) was relatively low at 6.8%, so operators do not have to
cope with too many false alarms. Importantly, the system was demonstrated to be sensitive to very small
leaks, with a minimum resolvable leak size of less than 2 L/min, an order of magnitude lower than the leaks
resolvable with conventional acoustic loggers. Despite the inherent variability of demand in the city, the
system was able to ensure a constant average detection latency of about 30 minutes, operationally acceptable
for both burst and background leak events. Utilities continue to struggle to accurately locate leaks. The
developed CNN-GNN ensemble model showed a median localization error of 45 m, which is much better than
the original hydraulic residual-based methods, which usually report localization errors in the order of 120 m.
This increased spatial resolution helps utilities further target inspection areas and prioritize maintenance
activities, thus lowering operation costs and repair response time. From a scalability point of view, the
distributed edge-cloud model was very effective. By running light-weight anomaly detection at edge
concentrators, the system achieved a reduction of upstream data traffic of 72% while reducing server load and
communication costs. The edge devices experienced a small amount of computational overhead, with energy
usage increased by less than 12% over baseline operation, which will be sufficient to maintain the
sustainability of battery-based deployments. These results demonstrate that the architecture is appropriate for
scaling to larger water delivery networks while not burdening existing IT resources. Results indicate that the
proposed scheme has a payback period of 2.7 years in networks with a penetration of smart meters above
60%, making it desirable for resource-constrained utilities. Moreover, the system's leak detection and control
mean the system can reduce the non-revenue water (NRW) by 15-20% per year. This reduction not only
produces significant economic savings but also helps in energy conservation and a sustainable approach to
resource management due to a reduction in unnecessary pumping and treatment costs.

6. Discussion

The research paper offers a number of important lessons for the design and deployment of Al- assisted leakage
monitoring of urban water systems. First, the use of a hybrid edge-cloud processing framework is an effective
way of balancing the competing needs of real-time anomaly detection with long-term scalability. By filtering
out anomalies at the edge, the system reduces the potential for data overload while still taking advantage of the
computational power of the cloud to perform more complex inference Second, the convolutional networks for
transient signal recognition and the graph neural networks for spatial topology inference are combined into a
neural ensemble architecture that is particularly useful in capturing dual dimensions of leakage events:
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localized flow and pressure disturbances and their propagation through the rest of the distribution network.
Finally, we introduce the concept of digital twin integration as an essential part of this methodology, which
enables the generation of large quantities of synthetic leak data to overcome data scarcity of labelled real-life
events, making the machine learning models more robust and generalizable. Apart from the technical
performance, the practical consequences of the implementation of such an architecture are also of utmost
importance. Edge-level preprocessing lends itself to privacy concerns as it allows household-level
consumption profiles, which are sensitive, not to be sent in their raw form to a centralized server. From the
cybersecurity perspective, the architecture needs to be hardened with end-to-end encryption schemes and
embedded intrusion or anomaly detection methods able to detect potential cyberattacks on the metering
infrastructure and communication link. Finally, the system is intentionally developed to be open-standards
compatible, so that it can easily integrate with the existing SCADA and AMI platforms. This interoperability
helps to mitigate the risk of vendor lock-in and encourages wider adoption by utilities looking to
modernise their operations while still having the flexibility to choose the technology they wish to purchase.

7. Conclusion & Future Work

This paper demonstrates the feasibility of a scalable Artificial Intelligence (Al) assisted metering architecture
for continuous leakage metering and fault diagnosis of urban water distribution systems. The pilot deployment
effectively shows high sensitivity of the system to small leaks, detecting events smaller than 2 L/min, which is
typical of events that would go undetected using standard methods. Besides, the proposed CNN-GNN
ensemble provides low localization errors below 50 m, which are significantly lower than the traditional
hydraulic residual approach. Indeed, the accompanying economic analysis confirms that the solution is
commercially viable, particularly in networks with smart-meter coverage in excess of 60%, delivering
payback periods of less than three years in such cases by reducing non-revenue water. Several ways to expand
the possibilities of this framework can be considered in the future. First, when reinforced learning is applied
to the adaptive valve control, the system can be changed from a diagnostic system into a proactive
management system, able to dynamically reconfigure network flows to reduce losses. Second, the architecture
is generalizable to cross- utility integration, which enables water, gas, and electricity networks to share the
infrastructure and monitoring resources for improved operational efficiency and lower deployment costs.
Finally, the creation of open-source toolkits and reference implementations will be critical to speeding
adoption among municipalities, particularly in the developing world, by reducing technical barriers and
enabling new forms of collaborative innovation among utilities, vendors, and researchers.
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