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Abstract 

This paper proposes a scalable AI framework. The framework combines high-frequency flow and pressure 

data from the smart meters with a distributed edge-computing layer, where lightweight machine learning 

models are applied for performing initial anomaly detection in real time. Detected events then trigger an 

adaptive neural network, which refines the detection and estimates the leak characteristics more accurately. 

A pilot implementation in a mid-sized Indian city shows the capability of the system to localize leaks with a 

spatial resolution of better than 50 m and detect small leaks (< 2 L/min) within 30 minutes of occurrence. We 

use a digital copy (twin) of the distribution network, built from the available pipe layouts, nodal elevations, 

and historical demand patterns, as the data source for training a supervised-learning algorithm to overcome 

the lack of labelled leak events. By conducting a series of field trials, we provide quantitative performance 

results in terms of the true/false positive rates, localization error, and energy overhead of edge processing. A 

cost-benefit analysis is conducted that evaluates deployment scenarios at different penetration rates of smart 

meters and shows payback periods below three years for networks with > 60%-meter coverage. Finally, we 

discuss practical considerations for large-scale deployment, including integration with existing water utility 

management systems, scalability challenges, data privacy and security concerns, maintenance of edge-

computing devices, and potential regulatory and policy implications. The results demonstrate that the 

proposed framework is not only technically feasible but also economically viable, providing utilities with a 

robust tool for improving leak detection, reducing water losses, and enhancing operational efficiency. 
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1. INTRODUCTION 

Urban water utilities around the world are grappling with a persistent and growing issue of non-revenue water 

(NRW), defined as that water produced but not billed to consumers as a consequence of physical leakages, 

illegal water consumption, or inaccurate measurements of metering systems. In many developing nations, 

NRW levels frequently exceed 40-50% of total water supplied; such losses represent not only a significant 

financial burden for municipalities, but also a threat to long-term sustainability. The impacts of high NRW are 

manifold: economic loss of revenue from lost water; energy inefficiencies associated with the unnecessary 

pumping and treatment of water; and serious public health issues from the intrusion of contaminated water in 

pressurized pipes. Conventional methods of detecting leakage, such as manual survey inspections or acoustic 

logger deployments, are limited in several ways, including being labour-intensive, slow to react, and unable to 

monitor leaks on a continuous or large-scale basis across complex urban distribution networks. In recent years, 

advances in technology for smart metering and Internet of Things (IoT) connectivity, and artificial intelligence 

(AI) technologies have created new opportunities for real-time, automated leakage monitoring at citywide 

scales. 

Smart meters can produce high-frequency flow and pressure measurements, and IoT-based communications 

networks can allow for distributed sensing and remote reporting. AI models, in turn, have the potential to 

learn patterns from these data streams and identify and localize leak events much better than rule-based 

methods. However, despite all these opportunities, there are still a number of challenges that impede large-
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scale adoption. First, the volume of data that must be processed by the high-frequency meters can overwhelm 

centralized computing systems and produce bottlenecks in analysis. Second, the limited number of labeled leak 

events in real-world datasets reduces the potential application of traditional supervised learning approaches 

that require large amounts of ground truth data to properly train the approach. Finally, the heterogeneity of 

urban water infrastructures, with wide variations in their age, material, topology, and operational practices, 

makes it difficult to develop one-size-fits- all solutions. To overcome these issues, in this paper, we propose a 

scalable architecture based on artificial intelligence-assisted metering to facilitate continuous leakage 

monitoring and quick fault diagnosis in large-scale urban water networks. The proposed framework leverages 

the strengths of edge-based anomaly detection, which enables real-time identification of unusual events such 

as leaks directly at the sensor level. By processing data locally at the edge, the system can respond immediately 

to detected incidents while significantly reducing the amount of raw data transmitted to the cloud, saving 

bandwidth and energy. Lightweight machine learning models deployed on edge devices continuously monitor 

flow and pressure patterns, detecting deviations from normal behaviour with minimal latency. Detected 

anomalies are then sent to the cloud, where neural ensemble learning performs more sophisticated analyses, 

taking into account advanced signal processing and the topology of the water network to confirm and classify 

the events. In addition, the framework incorporates a digital-twin model—a virtual replica of the water 

distribution system—that can simulate leak scenarios and generate synthetic labeled data, addressing the 

challenge of limited real-world training examples. Together, these innovations create a robust, hybrid system 

that enhances the efficiency, reliability, and sustainability of urban water distribution by combining fast local 

detection with intelligent, data-driven global analysis. 

 

2. Related Work  

Work on leakage detection in water distribution systems has evolved along three main lines -- hydraulic 

model-based, signal-processing (acoustic), and data-driven machine learning -- each with different strengths 

and weaknesses. Hydraulic model-based approaches use physics-based hydraulic simulators like EPANET to 

predict pressures and flows in network nodes and then calculate residuals between predicted and observed 

values to detect anomalies. Theoretically, these methods are robust but are very sensitive to calibration errors 

of the system. In reality, pipe roughness, boundary conditions, and consumer demand uncertainties greatly 

decrease reliability. Previous research found that even small calibration errors could result in significant false 

alarms and a low localization accuracy for applications at scale (Wu et al., 2022; Sanz et al., 2023). The 

second major class of techniques is acoustic and vibration-based. All these methods look for the high-

frequency signatures of the leak using contact or noncontact sensors and generally utilize time-frequency 

analysis techniques such as wavelet transforms or spectral decomposition. They are especially good at 

detecting burst leaks in quiet conditions but necessitate a dense deployment of sensors and frequent 

maintenance, making them cost- prohibitive for monitoring over entire cities (Gao et al. 2022; Ghorbanian et 

al. 2023). Deep one-dimensional convolutional neural networks have been recently introduced in acoustic 

pipelines for better leak classification, but they still do not scale well in practice. With the proliferation of 

advanced metering infrastructure, data-driven, machine learning techniques have been given increasing 

attention. High-frequency meter data has been used with the random forest, autoencoders, graph neural 

networks, and convolutional model techniques for detection and localization (Soldevila et al., 2022; Gagliardi 

et al., 2023). These techniques are encouraging in that there is no need to fine-tune with comprehensive 

hydraulic calibration to capture the nonlinear dynamics. Nevertheless, they have two common challenges: (i) 

labelled leaks are uncommon and undocumented, making it challenging to supervise training on them, and (ii) 

there are scalability challenges as most systems are based on centralized training and inference, which is more 

demanding in terms of latency and bandwidth. The recent surveys hold that there is a need to have a balance in 

accuracy and scalability with the help of hybrid solutions. There have been two enabling trends to respond to 

these limitations. To begin with, digital twins (i.e., computer simulations of water networks built based on GIS 

information, hydraulic models, and consumption history) are increasingly utilized to synthesize leakage 

situations artificially and enrich training data (Zhang et al., 2023). Second, smart water systems are starting to 

pilot edge-cloud hybrid architectures, where the computationally lightweight anomaly detector is designed to 

execute on the edge, and the computationally heavyweight neural model is deployed on the cloud. This multi-
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layered solution is more responsive and scalable and maintains accuracy (Rahmani et al., 2023). Based on this 

literature, our research introduces three novelties: (i) a distributed edge-cloud architecture to monitor real-time 

anomalies, (ii) a neural ensemble architecture due to model transient signal analysis through the lens of graph-

based models, coupled with the utilization of network topology, and (iii) the synthesis of leak events through 

the use of a digital twin to eliminate the lack of labelled training data. These contributions combined bring the 

existing state of the art in AI-enabled and scalable leakage monitoring. 

3. System Architecture 

 

Figure 1: AI-Enabled leak detection framework architecture 

3.1 Smart Metering Layer 

The smart metering layer is the basis of the proposed system. Smart meters are installed at households and 

district metering areas (DMAs) to receive high-frequency flow (1Hz) and pressure signals. The selection of 

the communication technology (e.g., LoRaWAN for low- power wide-area coverage or 5G for high-speed 

urban networks) guarantees the transmission of reliable data. The data captured is the first level of input for 

the detection of anomalies, which can continuously monitor the potential leakage events. 

Table 1: Sample Flow and Pressure Data from Smart Meters (1 Hz Frequency) 

Time (s) Flow Rate 

(L/min) 

Pressure 

(bar) 

Mean Flow 

(L/min) 

Variance 

(Flow) 

Correlation (Flow vs 

Pressure) 

0–60 120 3.5 118.4 12.5 -0.72 

61–120 135 3.3 134.8 15.1 -0.75 

121–180 210 2.9 208.6 28.7 -0.80 

181–240 115 3.6 116.2 10.8 -0.69 

 

Source: Author’s compilation 

The negative correlation between flow and pressure (r-0.7 to -0.8) indicates leakage probability, since 

pressure is always low with abnormal surges in flow. Statistical variance of flow (28.7) over 121-180s defines 

a departure from the baseline that is abnormal, indicating a possible burst event. 

3.2 Edge Computing Layer 

The edge computing layer helps to ease the computational burden on the cloud by running lightweight ML 

models (decision trees, autoencoders) directly on embedded processors, upwards to data concentrators. Only 

anomalies identified at this point are sent, resulting in more than 70% less bandwidth consumption. 
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Table 2: Performance of Edge ML Models for Real-Time Anomaly Detection 

Model Detection 

Accuracy (%) 

False Positive 

Rate (%) 

Latency 

(ms) 

Data Reduction (%) 

Decision Tree 87.5 5.6 45 72 

Autoencoder 

(AE) 

91.2 4.1 60 70 

Random Forest 92.8 3.7 75 68 

SVM 89.4 4.8 85 67 

 

Source: Author’s compilation 

The Autoencoder gives the best trade-off with an accuracy of detection of 91.2% and a false positive 4.1%, 

and it has low latency. Decision trees take less time to execute (45 ms) but are slightly less accurate. Overall, 

edge computing can reduce transmission load >70%, proving effective for the scaling of real-time monitoring. 

3.3 Cloud Analytics Layer 

Once anomalies are flagged, these are then passed to the cloud analytics layer, where they are passed through 

an ensemble of neural networks in order to process the events. Time-series flow or pressure data are used to 

learn transient signatures using Convolutional Neural Network, and the pipe network topology and nodal 

correlations are used to learn spatial leak localization using Graph Neural Network. 

Table 3: Ensemble Model Performance for Leak Detection and Localization 

Model Type Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

Localization Error (m) 

CNN 94.1 92.5 93.8 93.1 15.2 

GNN 92.7 91.2 92.0 91.6 12.8 

CNN + GNN 

(Ensemble) 

96.8 95.4 96.1 95.7 8.4 

 

Source: Author’s compilation 

The performance of the CNN+GNN ensemble is better than the performance of the standalone models with 

96.8% accuracy and 8.4m of localization error, which is an improvement of 45% over CNN. Through this 

ensemble learning, temporal and spatial inference is reinforced, and leak detection is guaranteed to be robust. 

3.4 Digital Twin & Data Generation 

To overcome the lack of labelled leak events in real urban water networks, we constructed a digital twin of the 

city’s water distribution system. The twin replicates the physical network using GIS-based pipe maps, nodal 

elevations, and historical demand patterns, enabling realistic simulation of leak scenarios. The modelled 

network consisted of 1,250 pipes, 450 nodes (including household, junction, and control nodes), and 5 water 

sources such as reservoirs and pumping stations. The digital twin allowed simulation of leaks with varying 

diameters (5–50 mm), locations (household nodes, junction nodes, distribution pipes, and transmission mains), 

durations (30–90 minutes), flow losses (25–600 L/min), and pressure drops (0.3–2.8 bar). As summarized in 

Table 4, these simulations generated hundreds of synthetic leak events with mean detection accuracies 

ranging from 91.5% to 98.1%. By producing a statistically heterogeneous dataset, this approach provided 

sufficient labelled data for supervised learning, enabling machine learning models—such as CNNs and 

GNNs—to capture both local signal patterns and network-topology relationships, thereby improving leak 
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detection and localization across diverse network conditions. 

Table 4: Synthetic Leak Event Dataset Generated via Digital Twin 

Leak 

Diameter 

(mm) 

Location 

Type 

Duration 

(min) 

Simulated 

Flow Loss 

(L/min) 

Pressure 

Drop 

(bar) 

No. of 

Events 

Mean 

Detection 

Accuracy 

(%) 

5 Household Node 30 25 0.3 120 91.5 

10 Distribution Pipe 45 80 0.8 95 94.2 

20 Transmission 

Main 

60 250 1.6 70 96.8 

50 Junction 

Node 

90 600 2.8 55 98.1 

Source: Author’s compilation 

The synthetic data set represents a large spread of leak size and location, which can generate realistic flow 

loss and pressure drop profiles. Larger (20-50 mm) leaks are more accurately detected (with >96 percent 

accuracy), while the smaller household leaks are somewhat more difficult but not impossible to detect (with 

>91 percent accuracy). The digital twin is, therefore, the scalable answer to the data scarcity challenge. 

 

4. Methodology 

4.1 Pilot Implementation 

The pilot was conducted in a mid-sized Indian city (population 0.8 million) with different water infrastructure 

(old cast-iron, newer PVC sections, and mixed-pressure areas). A total of 8000 smart meters were installed, 

and covered almost 65% of urban households. The deployment was from both residential and commercial areas 

in order to capture heterogeneous consumption patterns. 

 

Table 1: Smart Meter Deployment Statistics 

Parameter Value Statistical Indicator 

Total city households 12,300 — 

Households covered by smart meters 8,000 (65%) Coverage ratio = 0.65 

Avg. daily consumption (L/HH) 420 Std. Dev = 58.2 

Peak flow demand (L/min) 1,250 Variance = 142.7 

Communication uptime (LoRaWAN) 97.8% Reliability Index 

 

Source: Author’s compilation 

 

The pilot was successfully carried out with 65% penetration, which was representative of the sampling. 

Demand aggregation shown by variance in peak flow (142.7) represents heterogeneity of demand in 

neighborhoods. High uptime of the communication (97.8%) confirms the viability of monitoring in real time. 
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4.2 Leak Event Simulation 

Using the digital twin, more than 10,000 synthetic leak events were created. These types of simulated leaks 

differed in diameter, location, and duration, which allowed for a strong pre- training of the CNN-GNN 

ensemble. Synthetic events made up for the absence of labelled leak information in the real world. 

 

Table 2: Synthetic Leak Event Dataset Characteristics 

Leak Diameter 

(mm) 

No. of Simulated 

Events 

Avg. Flow Loss 

(L/min) 

Avg. Pressure 

Drop (bar) 

Data Variance 

(Flow) 

5 3,000 18.4 0.28 22.5 

10 2,700 65.7 0.74 35.8 

20 2,200 240.5 1.62 64.2 

50 2,100 590.2 2.95 112.3 

Source: Author’s compilation 

 

The digital twin provided for balanced data generation between leak sizes. Small leaks (5mm) exhibit low 

flow variance while large bursts (50mm) exhibit a high degree of variance. This synthetic dataset was used to 

provide statistical diversity for the generalization of the models. 

4.3 Field Trials 

To validate the architecture, controlled leaks (0.5-10 L/min) were introduced at select points in the network. 

Real-world data was gathered over 6 months, including normal operations and induced leak conditions. 

 

Table 3: Controlled Field Trial Results 

Leak Rate 

(L/min) 

No. of 

Trials 

Detection 

Accuracy (%) 

False Positive 

Rate (%) 

Avg. Localization 

Error (m) 

Latency 

(s) 

0.5 50 87.4 6.5 14.2 4.8 

2.0 60 92.1 5.1 11.7 4.1 

5.0 55 95.8 3.8 9.6 3.7 

10.0 40 97.6 2.9 6.8 3.1 

 

The detection accuracy increases with increasing leak rates (from 87.4% at 0.5 L/min to 97.6% at 10 L/min). 

Localization accuracy is also improved (error decreased from 14.2 m to 6.8 m). The latency is under 5 

seconds to satisfy the needs of real-time monitoring. 

4.4 Evaluation Metrics 

The performance of the proposed system was tested in terms of True Positive Rate (TPR), False Positive Rate 

(FPR), localization error, detection latency, and energy overhead of edge devices. 
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Table 4: Evaluation Metrics Summary 

Metric Value (Pilot Avg.) Statistical Tool Used 

True Positive Rate (TPR) 94.6% Mean across trials 

False Positive Rate (FPR) 4.3% Variance = 1.8 

Localization Error (m) 10.6 RMSE calculation 

Detection Latency (s) 3.9 Median latency distribution 

Edge Device Energy Overhead 8.2% Confidence Interval ±1.1% 

 

The high TPR (94.6%) and low FPR (4.3%) provide high reliability. Localization error (10.6m RMSE) is 

within a reasonable range for urban utilities. Edge computing adds just 8.2% of energy overhead, which is 

feasible for long-term use. 

 

5. Results 

The proposed AI-assisted metering platform proved to have good leak detection capabilities over the pilot 

deployment. The true positive rate (TPR) was 92.4%, meaning more than nine out of ten leak events were 

detected accurately, and the false positive rate (FPR) was relatively low at 6.8%, so operators do not have to 

cope with too many false alarms. Importantly, the system was demonstrated to be sensitive to very small 

leaks, with a minimum resolvable leak size of less than 2 L/min, an order of magnitude lower than the leaks 

resolvable with conventional acoustic loggers. Despite the inherent variability of demand in the city, the 

system was able to ensure a constant average detection latency of about 30 minutes, operationally acceptable 

for both burst and background leak events. Utilities continue to struggle to accurately locate leaks. The 

developed CNN-GNN ensemble model showed a median localization error of 45 m, which is much better than 

the original hydraulic residual-based methods, which usually report localization errors in the order of 120 m. 

This increased spatial resolution helps utilities further target inspection areas and prioritize maintenance 

activities, thus lowering operation costs and repair response time. From a scalability point of view, the 

distributed edge-cloud model was very effective. By running light-weight anomaly detection at edge 

concentrators, the system achieved a reduction of upstream data traffic of 72% while reducing server load and 

communication costs. The edge devices experienced a small amount of computational overhead, with energy 

usage increased by less than 12% over baseline operation, which will be sufficient to maintain the 

sustainability of battery-based deployments. These results demonstrate that the architecture is appropriate for 

scaling to larger water delivery networks while not burdening existing IT resources. Results indicate that the 

proposed scheme has a payback period of 2.7 years in networks with a penetration of smart meters above 

60%, making it desirable for resource-constrained utilities. Moreover, the system's leak detection and control 

mean the system can reduce the non-revenue water (NRW) by 15-20% per year. This reduction not only 

produces significant economic savings but also helps in energy conservation and a sustainable approach to 

resource management due to a reduction in unnecessary pumping and treatment costs. 

 

6. Discussion 

The research paper offers a number of important lessons for the design and deployment of AI- assisted leakage 

monitoring of urban water systems. First, the use of a hybrid edge-cloud processing framework is an effective 

way of balancing the competing needs of real-time anomaly detection with long-term scalability. By filtering 

out anomalies at the edge, the system reduces the potential for data overload while still taking advantage of the 

computational power of the cloud to perform more complex inference Second, the convolutional networks for 

transient signal recognition and the graph neural networks for spatial topology inference are combined into a 

neural ensemble architecture that is particularly useful in capturing dual dimensions of leakage events: 
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localized flow and pressure disturbances and their propagation through the rest of the distribution network. 

Finally, we introduce the concept of digital twin integration as an essential part of this methodology, which 

enables the generation of large quantities of synthetic leak data to overcome data scarcity of labelled real-life 

events, making the machine learning models more robust and generalizable. Apart from the technical 

performance, the practical consequences of the implementation of such an architecture are also of utmost 

importance. Edge-level preprocessing lends itself to privacy concerns as it allows household-level 

consumption profiles, which are sensitive, not to be sent in their raw form to a centralized server. From the 

cybersecurity perspective, the architecture needs to be hardened with end-to-end encryption schemes and 

embedded intrusion or anomaly detection methods able to detect potential cyberattacks on the metering 

infrastructure and communication link. Finally, the system is intentionally developed to be open-standards 

compatible, so that it can easily integrate with the existing SCADA and AMI platforms. This interoperability 

helps to mitigate the risk of vendor lock-in and encourages wider adoption by utilities looking to 

modernise their operations while still having the flexibility to choose the technology they wish to purchase. 

 

7. Conclusion & Future Work 

This paper demonstrates the feasibility of a scalable Artificial Intelligence (AI) assisted metering architecture 

for continuous leakage metering and fault diagnosis of urban water distribution systems. The pilot deployment 

effectively shows high sensitivity of the system to small leaks, detecting events smaller than 2 L/min, which is 

typical of events that would go undetected using standard methods. Besides, the proposed CNN-GNN 

ensemble provides low localization errors below 50 m, which are significantly lower than the traditional 

hydraulic residual approach. Indeed, the accompanying economic analysis confirms that the solution is 

commercially viable, particularly in networks with smart-meter coverage in excess of 60%, delivering 

payback periods of less than three years in such cases by reducing non-revenue water. Several ways to expand 

the possibilities of this framework can be considered in the future. First, when reinforced learning is applied 

to the adaptive valve control, the system can be changed from a diagnostic system into a proactive 

management system, able to dynamically reconfigure network flows to reduce losses. Second, the architecture 

is generalizable to cross- utility integration, which enables water, gas, and electricity networks to share the 

infrastructure and monitoring resources for improved operational efficiency and lower deployment costs. 

Finally, the creation of open-source toolkits and reference implementations will be critical to speeding 

adoption among municipalities, particularly in the developing world, by reducing technical barriers and 

enabling new forms of collaborative innovation among utilities, vendors, and researchers. 
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