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Abstract—This paper presents a novel approach to optimizing the augmented reality (AR) game rendering pipeline by
leveraging Convolutional Neural Networks (CNNs) for real-time texture enhancement and rendering acceleration. The
integration of CNNs into the Unreal Engine rendering pipeline enables the enhancement of low-resolution textures,
improving visual quality without compromising performance. The CNN model employed in this study achieves significant
improvements in both texture quality, as measured by Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM), and rendering speed. The results demonstrate a reduction in rendering time by approximately 25%, while
maintaining an average frame rate of 45 FPS, making the system suitable for real-time AR applications. User perception
tests confirm that the CNN-enhanced method provides superior visual quality and a more engaging user experience
compared to traditional methods. The proposed approach offers a promising solution to the challenges of high-resolution
texture rendering and real-time performance in AR games. Future research could explore the use of advanced CNN
architectures and hybrid models to further improve rendering efficiency and visual fidelity, particularly for mobile platforms.

Keywords—Augmented reality; game rendering; convolutional neural networks; texture enhancement; real-time
performance

I. INTRODUCTION

The development of augmented reality (AR) and virtual reality (VR) technologies has made
significant strides in recent years, bringing immersive experiences to various industries,
particularly in gaming[1]. AR games, which integrate virtual elements into the real world,
offer players an interactive experience that merges real-time environments with digital
content[2]. However, achieving high-quality rendering while maintaining performance
efficiency is a persistent challenge. In AR games, rendering detailed environments in real-time
requires high computational power, and any inefficiency in the rendering pipeline can lead to
lag, reduced visual quality, or a less engaging user experience[3].

Traditional rendering techniques, such as those used in game engines like Unreal Engine, rely
on processes like rasterization and texture mapping to generate realistic environments[4].
While these methods have proven effective, they often encounter limitations when dealing
with large, complex scenes that require high-resolution textures and intricate details. In these
cases, the rendering process can become computationally expensive, which impacts both the
quality of the visuals and the performance of the game[5].

One promising solution to these challenges is the use of Convolutional Neural Networks
(CNNgs), a class of deep learning models that have shown remarkable success in image-related
tasks. CNNs have demonstrated their ability to enhance image details, accelerate processing
times, and improve computational efficiency in several domains[6]. In the context of game
rendering, CNNs have been explored for texture synthesis and enhancement, offering the
potential to generate higher-quality textures from lower-resolution images and reduce the
computational burden of rendering. However, the application of CNNs to optimize the entire
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AR game rendering pipeline, particularly in real-time scenarios, remains an area that has yet to
be fully explored[7].

This paper proposes an approach to optimize the AR game rendering pipeline using CNN:ss,
focusing on multi-layer convolutional acceleration and texture detail enhancement. By
integrating a CNN-based model into the Unreal Engine’s rendering pipeline, we aim to
enhance the rendering performance and visual quality of AR games. The proposed method
leverages a multi-layer CNN architecture to accelerate the texture processing and detail
enhancement stages, allowing for faster rendering times without sacrificing visual fidelity. The
primary contributions of this research are: (1) the development of a CNN-based optimization
framework for AR game rendering, (2) the enhancement of texture details using advanced
convolutional techniques, and (3) the improvement of rendering efficiency and quality in AR
environments, particularly through real-time performance optimizations.

II. LITERATURE REVIEW

The optimization of rendering pipelines, particularly for augmented reality (AR) games, is a
critical research area due to the increasing demand for high-quality visuals and real-time
performance. Traditional rendering techniques, such as rasterization, have been widely used in
game engines but often encounter limitations when it comes to handling complex textures,
high levels of detail, and large-scale environments. While rasterization remains effective for
many scenarios, the need for more realistic rendering has led to the exploration of additional
techniques, such as ray tracing and neural network-based optimizations.

A. Challenges in AR Game Rendering

AR game rendering presents unique challenges compared to traditional gaming. One of the
primary challenges is the need to blend virtual elements seamlessly with the real world[8].
This requires not only accurate rendering of virtual objects but also real-time adjustments
based on environmental factors such as lighting and camera angles. Additionally, AR
applications typically involve more interactive and dynamic environments, requiring higher
processing power to ensure smooth rendering and responsiveness[9]. Achieving real-time
rendering without compromising on visual fidelity is a major obstacle in AR game
development.

Texture mapping, a fundamental component of the rendering pipeline, also poses challenges in
AR games[10]. High-resolution textures are crucial for enhancing realism; however, loading
and rendering detailed textures in real-time can be computationally expensive, leading to
increased latency and reduced performance. The size and complexity of texture maps in AR
environments require efficient optimization techniques to ensure that users experience high-
quality visuals without performance degradation.

B. Convolutional Neural Networks in Image Processing

Convolutional Neural Networks (CNNs) have become a cornerstone of modern image
processing and computer vision tasks. By learning hierarchical features through multiple
layers of convolution, CNNs are capable of recognizing complex patterns in images[11]. Their
success in areas such as image classification, object detection, and image enhancement has
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sparked interest in their potential applications in game graphics, particularly for improving
texture quality and rendering efficiency.

In the context of game rendering, CNNs have been employed for various tasks, including
image super-resolution, denoising, and texture synthesis. For instance, CNNs can be used to
generate high-resolution textures from low-resolution inputs, effectively enhancing the detail
of textures without requiring additional computational resources[12]. This approach can
significantly reduce the computational load typically associated with rendering high-resolution
textures in real-time.

Moreover, CNNs can be integrated into the rendering pipeline to accelerate processing
times[13]. By replacing traditional methods, such as interpolation and filtering, with
convolutional layers, CNN-based models can learn to generate smoother, more accurate
texture details while reducing the computational overhead of conventional rendering
techniques [14].

C. Matrix Factorization and Texture Enhancement

Another key area of research in texture enhancement is matrix factorization, a technique used
to approximate high-dimensional data with lower-dimensional representations[15]. Matrix
factorization has been applied in various domains, including recommendation systems and
image processing, to extract latent factors that can represent underlying patterns in data. In the
context of texture enhancement, matrix factorization techniques have been employed to learn
low-rank approximations of texture maps, allowing for the reconstruction of detailed textures
from simplified representations[16].

While matrix factorization methods have proven effective in texture enhancement, they are
often limited by their inability to fully capture the complex patterns present in high-resolution
textures[17]. Combining matrix factorization with CNNs allows for more accurate texture
reconstruction, as CNNs are capable of learning and applying more complex feature
representations. By integrating CNNs into texture enhancement workflows, it is possible to
achieve higher-quality texture maps that can be rendered more efficiently.

D. Optimizing Rendering Pipelines with CNNs

The application of CNNs in optimizing the rendering pipeline has received growing attention
in recent years. Several studies have demonstrated that CNNs can be used to enhance various
stages of the rendering process, such as shading, lighting, and texture mapping. In particular,
CNNs have been utilized to accelerate the shading process by learning to approximate
complex lighting models and applying these approximations in real-time[18].

One promising approach is the use of multi-layer convolutional architectures, which can
model complex interactions between light, materials, and textures. These models can be
trained to predict shading effects based on input parameters, reducing the need for
computationally expensive ray tracing operations[19]. By embedding CNNs into the rendering
pipeline, it becomes possible to significantly improve rendering speed while maintaining
visual fidelity[20].

Vol: 2025 | Iss: 1 | 2025 | © 2025 Membrane Technology
1224



Membrane Technology

ISSN (online): 1873-4049

Furthermore, the integration of CNNs into existing game engines, such as Unreal Engine,
offers a pathway to optimize AR game rendering. By enhancing texture mapping, accelerating
the shading process, and improving overall efficiency, CNN-based models can contribute to
more fluid and immersive AR experiences. The combination of CNNs with traditional
rendering techniques promises to overcome some of the key challenges in AR game
development, providing a more scalable solution to rendering optimization[21].

E. Hybrid Models in Rendering Optimization

Recent research has explored hybrid models that combine CNNs with other machine learning
techniques to further enhance the rendering pipeline[22]. For example, reinforcement learning
(RL) has been combined with CNNs to adaptively optimize rendering parameters based on
real-time feedback, allowing for dynamic adjustments to rendering quality and
performance[23]. This approach holds promise in addressing real-time performance
requirements in AR gaming, where the rendering process needs to be continuously optimized
based on changing environmental factors and user interactions.

Hybrid models that integrate both convolutional techniques and traditional rendering
optimizations, such as level of detail (LOD) adjustments and texture compression, are gaining
traction[24]. These hybrid systems combine the strengths of machine learning with established
graphics techniques to create a more robust and efficient rendering pipeline.

III. METHODOLOGY

This section presents the methodology for integrating Convolutional Neural Networks (CNNs)
into the augmented reality (AR) game rendering pipeline. The approach aims to optimize both
the quality of texture details and the computational efficiency of the rendering process. By
leveraging CNN-based models for multi-layer convolutional acceleration and texture
enhancement, we seek to improve the overall AR gaming experience by enhancing texture
details without incurring the high computational cost typically associated with high-resolution
textures.

A. CNN Architecture for Texture Enhancement and Rendering Acceleration

The CNN architecture designed for this study focuses on two primary objectives: enhancing
the quality of textures and accelerating the texture mapping process within the rendering
pipeline. The CNN model consists of several convolutional layers that progressively learn
more complex features of the texture maps, ultimately producing high-resolution textures from
low-resolution inputs.

The input to the network consists of a low-resolution texture map, denoted as Tiow, Where
each texture map is represented as a matrix TiowERTW*C, where H and W represent the
height and width of the texture map, and C is the number of color channels (typically 3 for
RGB textures). The network is designed to take these low-resolution textures and enhance
them to a high-resolution form, denoted as Thigh€R" W€ where H' and W' are the
dimensions of the high-resolution texture, and typically H'=2H and W'=2W.

The architecture is composed of several convolutional layers, each followed by a ReLU
activation function. The first few layers learn basic features such as edges and textures, while
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deeper layers capture high-level details. The core of the model’s design lies in its ability to
extract texture features hierarchically through multiple convolutional layers. The convolution
operations are defined by:

k
fo(Tiow) = ) (Tigw * KD (1)

where K represents the convolutional filters (kernels) at layer i, and *denotes the convolution
operation. The number of layers and kernel sizes are chosen through experimentation to
effectively capture the necessary features for texture enhancement. The network includes
Residual Connections that bypass certain convolutional layers, allowing information to flow
more directly from earlier layers to deeper ones, mitigating the vanishing gradient problem
and improving feature preservation.

At the output layer, the model generates an enhanced texture map Thigh, Which is then used
for real-time texture mapping in the rendering pipeline.

B. Integration into Unreal Engine Rendering Pipeline

Once the CNN model has been trained, it is integrated into the Unreal Engine rendering
pipeline. In the typical pipeline, textures are applied to 3D models via a series of stages,
including texture mapping, shading, and lighting. By incorporating the CNN into this pipeline,
the model is used to enhance textures before they are mapped onto objects.

The integration process begins by passing low-resolution textures through the CNN for
enhancement. This step is applied to textures used in the initial stages of rendering. After
texture enhancement, the high-resolution textures are applied to 3D models, which are then
processed through the standard rendering pipeline in Unreal Engine. This workflow
significantly reduces the need for large-scale, high-resolution texture loading and rendering,
thus enhancing performance and visual fidelity.

Additionally, the CNN model helps accelerate the texture mapping process by providing real-
time enhanced textures, reducing the overall computational overhead of traditional rendering
techniques. The use of the CNN model for texture enhancement is expected to increase
rendering efficiency while improving texture quality.

C. Training the CNN Model

The CNN model is trained using a dataset consisting of pairs of low-resolution and high-
resolution textures. The dataset includes a variety of textures typically used in AR game
environments, such as textures for both indoor and outdoor settings. Each texture pair consists
of a low-resolution texture Tlow and its corresponding high-resolution counterpart Thigh, with
the goal of teaching the network to predict the high-resolution texture from the low-resolution
input.

The model is trained by minimizing the following loss function:

L=MLyse + 7\Zl-ﬁ'perceptual (2)
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where LMSE is the Mean Squared Error (MSE) loss, which measures the pixel-wise
difference between the predicted and ground truth high-resolution textures:

I~
Lyvsg = NZ(Tﬁigh — Thign)” 3)
i=1
The second term, Lperceptual, is the perceptual loss, which captures the difference between
the features of the predicted and ground truth textures in a higher-level feature space. This is
defined as:

L
Lperceptual = Z”(I)l(Thigh) _(I)I(Thigh)”2 (4)
1=1

where ¢, represents the feature map of the texture at layer | in a pre-trained network, and L is
the number of layers used in the perceptual loss calculation. This term helps ensure that the
enhanced texture maintains perceptual similarity to the ground truth texture, even if the pixel-
wise difference is not minimal.

The model is trained using the Adam optimizer, which adjusts the learning rate based on the
first and second moments of the gradients. This allows the model to converge efficiently
while minimizing the combined loss function.

D. Evaluation Metrics
To evaluate the performance of the CNN model, the following metrics are used:

1) Peak Signal-to-Noise Ratio (PSNR): PSNR is used to measure the quality of the
enhanced texture compared to the ground truth texture. Higher PSNR values indicate better
image quality, with values greater than 30 dB typically indicating perceptually high-quality
images.

2)  Structural Similarity Index (SSIM): SSIM measures the perceptual similarity between
the predicted and ground truth textures. A higher SSIM score reflects greater similarity in
structure and texture details.

3)  Rendering Speed: The rendering speed is evaluated by measuring the time taken to
render scenes with both the enhanced and original textures. The goal is to determine how
much the CNN-based enhancement accelerates the texture mapping and overall rendering
process.

E. Real-Time Rendering Considerations

Real-time rendering is a crucial aspect of AR games, where delays in rendering can
significantly impact user experience. To ensure that the CNN model can be applied in real-
time, it is optimized for fast execution using GPU acceleration. The convolutional layers are
designed to be lightweight, ensuring that the model runs efficiently even on devices with
limited computational resources.

The model is evaluated in terms of both texture quality and rendering speed, ensuring that the
proposed optimization meets the performance requirements for AR games. By reducing the
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need for high-resolution texture loading and processing, the CNN model provides a
significant improvement in both the speed and quality of the rendering pipeline.

IV. SYSTEM ARCHITECTURE AND EXPERIMENTAL DESIGN

This section outlines the architecture of the proposed system for optimizing the augmented
reality (AR) game rendering pipeline using Convolutional Neural Networks (CNNs). The
architecture integrates a multi-layer convolutional model into the Unreal Engine’s rendering
pipeline, ensuring real-time enhancement of texture details and acceleration of the overall
rendering process. Additionally, the experimental design used to evaluate the system’s
performance is detailed, including the dataset, baseline models, evaluation metrics, and testing
procedures.

A. System Architecture

The system architecture consists of multiple components that collaborate to enhance the AR
game rendering pipeline’s efficiency and visual fidelity. The architecture integrates a CNN-
based model into the rendering process, ensuring that texture enhancement and rendering
acceleration occur seamlessly in real-time. The overall system is designed to support both
desktop and mobile implementations of Unreal Engine, with GPU acceleration to ensure
optimal performance in AR environments (see Figure 1).

The system begins with the Data Collection and Preprocessing Module, which is responsible
for gathering and preparing textures used in the AR game. These textures include low-
resolution inputs that will be enhanced through the CNN model and high-resolution textures
used as ground truth for training the model. The preprocessing steps include resizing,
normalizing pixel values, and applying augmentation techniques to increase the model's
robustness. The dataset is split into training, validation, and testing subsets to evaluate the
model’s generalization capabilities.

Once the textures are prepared, they are passed to the CNN Model Integration module, where
the CNN is employed to enhance the textures in real-time. Low-resolution textures are
processed through the CNN model to generate high-resolution, detailed textures, which are
then used in the rendering pipeline. This model accelerates the texture mapping process,
allowing for enhanced textures to be applied without the computational overhead of high-
resolution texture loading.

The enhanced textures are then fed into the Rendering Module, which handles the application
of textures onto 3D models and renders the AR scenes. This module is responsible for
generating immersive environments by incorporating enhanced textures into the scene’s
lighting, shading, and graphical details. The real-time rendering ensures that users experience
smooth interaction with the AR content without visible delays or quality degradation.

Finally, the Performance Monitoring and Evaluation Module tracks key performance
indicators such as rendering speed, texture quality, and computational efficiency. By
continuously monitoring these factors, the system evaluates its own performance and identifies
areas for improvement, allowing for ongoing optimization of the rendering pipeline.
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Fig. 1. System Architecture of Optimized AR Game Rendering Pipeline
B. Experimental Design

The experimental design aims to rigorously assess the effectiveness of the CNN-based system
in optimizing both the texture quality and rendering performance in AR games. The
experiments are structured to compare the proposed method with baseline rendering
techniques, allowing for an objective evaluation of the CNN model’s contributions.

The dataset used in the experiments consists of a variety of textures commonly encountered in
AR game environments. These textures represent both indoor and outdoor scenes, including
surfaces like walls, floors, and nature elements such as trees and buildings. The dataset
contains low-resolution versions of these textures, which serve as input to the CNN, as well as
high-resolution ground truth textures used for comparison. Textures are resized to fit the input
dimensions of the CNN model, and the dataset is divided into training, validation, and testing
sets to assess both the model's learning capability and its ability to generalize to new data.

The performance of the proposed method is compared to several baseline models. The first
baseline is the Traditional Texture Mapping approach, which uses standard methods for
applying textures to 3D models without any optimization. The second baseline involves High-
Resolution Texture Mapping, where high-resolution textures are used directly, thus providing
a performance reference without the benefit of enhancement. Finally, Other CNN-Based
Texture Enhancement models are considered for comparison, with the aim of evaluating the
relative effectiveness of the proposed architecture in enhancing textures and improving
rendering speed.

The evaluation metrics used to assess the model’s performance include Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM), both of which are used to measure the
quality of enhanced textures. PSNR evaluates the pixel-wise quality of the enhanced textures
in comparison to the high-resolution ground truth, with higher values indicating better quality.
SSIM measures perceptual similarity between the predicted and actual textures, with higher
SSIM scores indicating better perceptual fidelity. Additionally, Rendering Speed is evaluated
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by measuring the time required to render a scene with enhanced textures, with the goal of
determining whether the CNN-based system improves rendering efficiency compared to
traditional methods. The Frame Rate is also tracked, as it is a critical performance metric for
ensuring real-time rendering, especially in AR environments where smooth interaction is
essential.

The testing procedure involves training the CNN model on the training subset of the dataset,
tuning the model on the validation set, and evaluating its performance on the test set. The
model is tested under two conditions: (1) Texture Enhancement Only, where the CNN model
is applied solely to enhance textures, and (2) Full Rendering Pipeline, where the complete
pipeline, including texture enhancement, is evaluated to assess the overall impact on rendering
performance and efficiency. Experiments are conducted on both a high-performance desktop
setup and a mobile device to evaluate the scalability of the system and its suitability for real-
time AR applications.

C. Performance Evaluation and Benchmarking

The primary goal of the experimental evaluation is to compare the performance of the CNN-
based texture enhancement and rendering optimization method to traditional rendering
techniques. The proposed method is benchmarked against the baseline models in terms of
rendering speed, texture quality, and overall system performance.

To assess texture quality, the PSNR and SSIM scores are calculated for the enhanced textures
generated by the CNN model, and the results are compared to those obtained using the
baseline methods. Higher PSNR and SSIM values indicate that the enhanced textures more
closely resemble the high-resolution ground truth, suggesting superior texture detail and
perceptual quality.

Rendering speed is measured by calculating the time taken to render a scene with both the
enhanced textures and traditional textures. This is critical in AR environments, where
rendering needs to occur in real-time without noticeable delays. The Frame Rate is also
measured to ensure that the system can maintain smooth interactions with users while
rendering high-quality textures.

Finally, user perception tests are conducted to evaluate the subjective quality of the rendered
scenes. Participants are asked to rate the visual quality of the enhanced textures and the overall
AR experience, allowing for a comprehensive assessment of the proposed system's impact on
the user experience.

V. RESULTS

The experimental results focus on evaluating the performance of the CNN-based optimization
method for texture enhancement and rendering acceleration in augmented reality (AR) game
environments. The evaluation includes texture quality, rendering speed, and computational
efficiency. The results are compared with traditional methods to highlight the effectiveness of
the proposed approach.
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A. Texture Quality Improvement

The primary goal of the CNN-based optimization is to enhance the texture details in AR
environments. To evaluate texture quality, we employed Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM), which are widely used metrics for assessing image

quality.

Table 1 summarizes the PSNR and SSIM values for the CNN-enhanced textures, compared to

high-resolution ground truth textures and baseline methods.

TABLEL. ~ TEXTURE QUALITY METRICS (PSNR AND SSIM)

Method PSNR (dB) SSIM
CNN-Enhanced Texture 35.2 0.91
High-Resolution Texture 36.1 0.93
Traditional Texture Mapping 30.4 0.85
Other CNN-Based Enhancement 342 0.89
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Fig.2. Rendering Speed Comparison

Fig.3. User Perception Scores for Texture Quality and Overall Rendering Experience

User Perception Scores for Texture Quality and Overall Experience

Scores

CNN-Enhanced Method Traditional Method Other CNN-Based
Method

The results show that the CNN-Enhanced Texture achieves a PSNR of 35.2 dB and an SSIM
of 0.91. These values, while slightly lower than the high-resolution texture's PSNR of 36.1 dB
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and SSIM of 0.93, demonstrate that the CNN-enhanced textures still maintain high perceptual
quality. Moreover, the CNN-based method significantly outperforms traditional texture
mapping (PSNR = 30.4 dB, SSIM = 0.85). This indicates that the CNN is effective at
enhancing textures without introducing significant artifacts or perceptual degradation.
Additionally, the Other CNN-Based Enhancement method performs comparably to the
proposed model, but the texture quality is slightly lower, suggesting that the proposed
architecture yields better results for texture enhancement.

B. Rendering Speed and Performance

An important aspect of optimizing AR game rendering is improving the rendering speed, as
real-time rendering is crucial for immersive user experiences. To measure the impact of the
CNN-based system on rendering speed, we calculated the rendering time required to process
and display a typical AR scene.

The comparison in Figure 2 shows that the CNN-enhanced method achieves a significant
reduction in rendering time compared to traditional high-resolution texture mapping. On
average, the CNN-enhanced approach reduces rendering time by approximately 25%
compared to the baseline high-resolution texture mapping method. Traditional methods using
high-resolution textures are more computationally expensive due to the larger texture size and
increased data load, resulting in slower processing times. In contrast, the CNN-based method
processes low-resolution textures, enhancing them in real-time, which reduces the load on the
GPU and speeds up the overall rendering process.

Additionally, the frame rate is another critical performance metric for evaluating real-time
rendering efficiency. The CNN-enhanced method achieves an average frame rate of 45 FPS,
whereas traditional high-resolution texture mapping methods have an average frame rate of 35
FPS. This significant improvement in frame rate demonstrates the efficiency of the CNN-
based method in ensuring smooth, real-time rendering while maintaining high-quality texture
details.

C. User Perception and Visual Quality

In addition to the quantitative metrics, we also conducted user perception tests to evaluate the
visual quality of the rendered scenes with enhanced textures. Participants were asked to rate
the quality of the textures and the overall rendering experience on a scale from 1 to 5, with 1
being poor and 5 being excellent. These ratings were used to assess the perceived quality of
the textures and the user experience in AR environments.

Figure 3 illustrates the user ratings for texture quality and overall rendering experience. The
CNN-Enhanced Method received an average score of 4.2 for texture quality and 4.0 for overall
rendering experience. This indicates that users found the enhanced textures to be of high
quality and the rendering experience to be visually satisfying. On the other hand, the
Traditional Method using high-resolution textures received lower ratings, with an average of
3.2 for texture quality and 3.0 for overall rendering experience. The Other CNN-Based
Enhancement method also received relatively high ratings (texture quality: 3.8, overall
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rendering experience: 3.7), but it was still not as favorable as the CNN-enhanced method
proposed in this study.

These subjective evaluations align with the quantitative findings, confirming that the CNN-
enhanced textures are perceived as significantly better by users, improving both the quality of
the textures and the overall rendering experience.

D. Comparison with Baseline Methods

The comparison of the CNN-enhanced method with traditional techniques and other CNN-
based methods reveals several advantages in texture quality and rendering performance. The
CNN-Enhanced Texture outperforms traditional methods in terms of both PSNR and SSIM,
indicating that the proposed model provides a better balance between texture enhancement and
computational efficiency. Furthermore, the CNN-enhanced method demonstrates a significant
reduction in rendering time, achieving faster texture processing and improved real-time
rendering performance.

In comparison to other CNN-based enhancement methods, the proposed architecture performs
at least equally, if not better, in terms of texture quality. The main advantage of the proposed
method lies in its integration into the rendering pipeline, where the real-time enhancement of
textures leads to faster processing times without sacrificing visual quality. By leveraging
CNNs for both texture enhancement and acceleration, the system provides a significant
improvement over traditional texture mapping methods, which rely on loading and rendering
high-resolution textures.

E. Overall Performance

The results confirm that the CNN-based optimization method not only improves texture
quality but also significantly accelerates the rendering process. The combination of multi-layer
convolutional acceleration and texture enhancement leads to a system that can produce high-
quality textures in real-time while reducing computational costs. The improvements in texture
quality, rendering speed, and user experience demonstrate the effectiveness of the CNN-based
approach for optimizing the AR game rendering pipeline.

VI. DISCUSSION

The experimental results presented in the previous section demonstrate the significant
advantages of using Convolutional Neural Networks (CNNs) to optimize the rendering
pipeline for augmented reality (AR) games. The proposed CNN-based optimization method
successfully improves both texture quality and rendering performance, providing a substantial
enhancement over traditional methods. In this section, we will analyze these results in detail,
discussing the impact of the CNN-based approach on texture enhancement, rendering speed,
user experience, and potential limitations.

A. Texture Quality Improvement

The CNN-based optimization method significantly improves texture quality, as demonstrated
by the higher PSNR and SSIM scores compared to traditional methods. The PSNR value of
35.2 dB and SSIM value of 0.91 for the CNN-enhanced textures indicate a perceptible
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improvement in the visual quality of textures over traditional methods, which scored 30.4 dB
and 0.85, respectively. Although the CNN-enhanced method does not fully match the quality
of high-resolution ground truth textures (PSNR = 36.1 dB, SSIM = 0.93), it offers a
compelling trade-off between quality and computational efficiency.

This improvement in texture quality is primarily attributed to the ability of CNNs to capture
intricate spatial patterns within low-resolution textures and enhance their details in a way that
traditional methods cannot. CNNs learn hierarchical representations of texture features, which
allow them to enhance fine details while preserving the overall structure of the texture. This
makes them particularly suitable for AR applications, where high-quality textures are essential
for creating realistic and immersive environments.

However, while the CNN-enhanced method provides a substantial improvement, there
remains a slight gap between the enhanced textures and the ground truth high-resolution
textures. This difference could be due to limitations in the training data, the complexity of
certain textures, or the inherent limitations of the CNN model used. Further refinement of the
model, including the use of more advanced CNN architectures, could help bridge this gap and
achieve even higher texture quality.

B. Rendering Speed and Efficiency

One of the most significant advantages of the CNN-based optimization method is its impact
on rendering speed. As shown in Figure 2, the CNN-enhanced method reduces rendering time
by approximately 25% compared to traditional high-resolution texture mapping methods. The
traditional methods, which require high-resolution textures to be loaded and applied during the
rendering process, are computationally expensive and slow, especially for AR environments
where real-time performance is essential. The CNN-based method overcomes this limitation
by processing low-resolution textures and enhancing them in real-time, reducing the load on
the GPU and accelerating the rendering process.

Moreover, the CNN-enhanced method maintains a high frame rate of 45 FPS, significantly
outperforming traditional methods, which achieved only 35 FPS. The higher frame rate is
crucial for AR applications, where smooth, real-time rendering is necessary for a seamless
user experience. The reduction in rendering time and the improvement in frame rate
demonstrate that the proposed CNN-based approach is highly effective in optimizing the AR
game rendering pipeline, ensuring that texture enhancement does not come at the cost of real-
time performance.

This performance improvement is especially valuable in AR applications, where
computational resources are often constrained by the need to handle both virtual and real-
world elements simultaneously. By using CNNs to enhance textures on the fly, the proposed
method enables AR applications to deliver high-quality visuals without compromising
performance, making it suitable for mobile and real-time applications.

C. User Perception and Visual Quality

User perception tests, as shown in Figure 3, revealed that participants rated the CNN-enhanced
textures highly in terms of both texture quality (average score of 4.2) and overall rendering
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experience (average score of 4.0). These results align with the quantitative metrics (PSNR and
SSIM) and further confirm that users perceive the CNN-enhanced method as providing
superior visual quality compared to traditional texture mapping. Traditional methods, on the
other hand, received significantly lower ratings, with scores of 3.2 for texture quality and 3.0
for overall experience.

The positive user feedback highlights the effectiveness of the CNN-enhanced method in
improving the visual quality of AR games. By enhancing the textures in real-time, the CNN
model creates a more immersive and visually appealing experience for users. This is
particularly important in AR games, where realism and visual fidelity play a significant role in
user engagement and satisfaction.

The improvement in overall rendering experience is also notable, as the CNN-based
optimization does not just enhance texture quality but also maintains smooth performance,
which is a key aspect of AR applications. The high ratings in user perception indicate that the
proposed method improves the overall AR experience, making it both visually pleasing and
interactive.

D. Comparison with Baseline Methods

The comparison between the CNN-enhanced method and baseline models underscores the
advantages of integrating CNNs into the AR game rendering pipeline. The proposed method
consistently outperforms traditional texture mapping and other CNN-based enhancement
methods in terms of both texture quality (PSNR and SSIM) and rendering speed. The CNN-
enhanced method demonstrates that integrating deep learning techniques into traditional
rendering pipelines can yield significant improvements in both quality and performance,
especially in real-time applications such as AR games.

One key advantage of the CNN-based approach over traditional methods is its ability to
process and enhance textures in real-time, reducing the computational overhead of loading and
rendering high-resolution textures. This makes the CNN-enhanced method particularly well-
suited for mobile and AR environments, where real-time performance is crucial. In
comparison to other CNN-based enhancement methods, the proposed method excels in texture
quality and performance due to its efficient integration into the rendering pipeline.

E. Limitations and Future Directions

While the proposed CNN-based method demonstrates significant improvements, it is not
without limitations. The model’s performance could be influenced by the complexity of
certain textures, and its ability to handle highly dynamic or complex textures may need further
improvement. Additionally, the quality gap between the enhanced textures and high-resolution
ground truth textures suggests that there is still room for refinement in the model's
architecture.

Future research could explore the use of more advanced CNN architectures, such as
Generative Adversarial Networks (GANs) or ResNet-based models, to further enhance texture
detail and reduce the perceptual gap. Furthermore, optimizing the model for deployment on
mobile platforms, where computational resources are more limited, could expand the
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applicability of this method to a broader range of devices. Exploring hybrid models that
combine CNNs with other rendering optimization techniques, such as level of detail (LOD)
adjustments or real-time texture compression, could provide further improvements in
rendering efficiency and texture quality.

VII. CONCLUSION

This study presents a novel approach to optimizing the augmented reality (AR) game
rendering pipeline using Convolutional Neural Networks (CNNs). The proposed method
significantly enhances texture quality and rendering speed, making it highly efficient for real-
time AR applications. The integration of CNNs into the rendering process allows for the
enhancement of low-resolution textures in real-time, achieving high perceptual quality as
demonstrated by improved PSNR and SSIM scores. Additionally, the approach reduces
rendering time by approximately 25% and maintains a high frame rate of 45 FPS, ensuring
smooth performance in AR environments.

User perception tests further validate the effectiveness of the method, with participants rating
the visual quality and overall rendering experience highly. This demonstrates that the CNN-
based optimization not only improves computational performance but also enhances user
experience in AR games.

In conclusion, the CNN-based optimization method significantly improves the rendering
pipeline by balancing texture enhancement with real-time performance. Future work could
explore advanced CNN architectures, optimization for mobile platforms, and hybrid
approaches that combine CNNs with other rendering techniques. These improvements could
further extend the method’s applicability across different AR environments and devices,
enhancing the potential for widespread use in interactive immersive experiences.
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