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Abstract: 

Addressing the issues of particle swarm optimization (PSO) in robot path planning, such as getting trapped in local optima, 

improper parameter settings, and low computational efficiency, this paper proposes a novel hybrid optimization strategy that 

combines PSO with simulated annealing (SA). This hybrid algorithm integrates the advantages of both algorithms, leveraging 

the rapid convergence ability of PSO and the global search capability of SA to provide a more efficient, flexible, and robust 

solution. It is particularly suitable for complex, dynamic, and multi-objective scenarios and can be used to solve the path 

planning problem of cooperative robots in complex and changing environments. Through simulation experiments, this article 

has verified the effectiveness of the algorithm. The results show that, compared to traditional PSO and SA algorithms, this 

algorithm demonstrates higher performance and efficiency in planning the trajectory of a robot in a complex dynamic 

environment. 
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INTRODUCTION 

In recent years, cooperative robots were increasingly used in various fields, particularly in warehousing and logistics, smart 

manufacturing,[1] smart cities,[2] medical services,[3] and smart agriculture.[4] Path planning, as a core component of cooperative 

robot technology, is crucial for enhancing the overall performance of robotic systems. However, in dynamic and complex 

environments, path planning for cooperative robots faces numerous challenges, such as real-time requirements, multi-objective 

optimization, dynamic changes in the environment, and collision avoidance among robots. Currently, path planning has become 

one of the key technologies for achieving autonomous navigation of robots and is also one of the important research topics in 

the field of artificial intelligence and robotics.[5-7] 

various intelligent algorithms, represented by Particle Swarm Optimization (PSO),[8] have been applied to robot path planning 

to seek more efficient and robust solutions. However, the PSO algorithm also suffers from issues such as easily falling into local 

optima and low search accuracy.To solve the above problems, many researchers have tried to optimize the algorithm,For example, 

using PSO, DE algorithm to smooth the trajectory while improving the efficiency of the robot.[9] Although existing research has 

made significant progress in cooperative robot path planning, most existing methods are primarily designed for static or quasi-

static environments and have poor adaptability to dynamically changing environments, making it difficult to adjust path planning 

strategies in real-time. 

To address these deficiencies, this article proposes a dynamic trajectory planning method for collaborative robots based on the 

hybrid SA-PSO algorithm. This method aims to improve the real-time performance, accuracy, and adaptability of trajectory 

planning by combining the global search capabilities of the SA algorithm with the rapid convergence characteristics of the PSO 

algorithm. As a result, it provides strong support for the efficient use of collaborative robots in dynamic and complex 

environments, surpassing the limitations of the traditional Particle Swarm Optimization (PSO) algorithm. 

TRADITIONAL PARTICLE SWARM OPTIMIZATION ALGORITHM 

Basic Principles 

The basic idea of the particle swarm optimization algorithm is to treat solutions in the search space as a group of "particles," 

where each particle represents a potential solution. The update of a particle is influenced by its personal historical best position 

and personal cognition (individual extreme pbest) as well as the historical best position and social cognition (global extreme 

gbest) of the entire swarm. In this algorithm, the velocity update of a particle follows the following formula: 

νi,k(n+1) = ω ∙ νi,k(n)+c1 ∙r1∙（pbesti, k-xi,k(n)) +c2 ∙r2∙(gbestk-xi,k(n))                                         (1) 

νi,k(n) represents the velocity of particle i in the k-th dimension during the n-th iteration;ω is the inertia weight, which controls 

the degree of preservation of the particle's initial direction of motion; c1 and c2 are the learning coefficients, corresponding to 

the particle's self-awareness (personal best) and social awareness (global best) respectively; r1 and r2 are random numbers 
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between 0 and 1, used to introduce an element of randomness; pbesti,k is the position of particle i's personal best in the k-th 

dimension; gbestk is the position of the group's global best in the k-th dimension; xi,k is the position of particle i in the k-th 

dimension during the n-th iteration.. 

The position update formula is as follows: 

s𝑖, (𝑛+1) =𝑠𝑖, (𝑛)𝜈𝑖, 𝑘(𝑛+1)                                                                               (2) 

Here, 𝑠𝑖, 𝑘(n+1) represents the new position of particle i in the k-th dimension in the next iteration, and 𝜈𝑖, 𝑘(n+1) is the new 

velocity calculated through the velocity update formula. The inertia weight ω is usually set higher at the beginning of the 

algorithm to facilitate global search, typically within the range of [0.4, 0.9]. A smaller ω is more beneficial for local search, while 

a larger ω value is more conducive to global search. It gradually decreases as the number of iterations increases, promoting local 

search. 

Current Status of PSO Algorithm Application 

The Particle Swarm Optimization (PSO) algorithm is capable of global search, helping to avoid local optimal solutions, which 

is particularly important for robot path planning as it can attempt to find the globally optimal path for all robots to work together. 

It possesses excellent parallel processing capabilities. Essentially, the PSO algorithm is parallel, enabling it to efficiently handle 

path planning problems in multi-robot systems, where each robot or path can be represented by a particle and optimized 

simultaneously. The PSO algorithm can adapt to different environments and task requirements by adjusting parameters, making 

it more flexible when dealing with multi-robot path planning in dynamic or uncertain environments. The implementation of the 

PSO algorithm is relatively simple and easy to integrate with existing robot control systems. 

However, traditional methods based on Particle Swarm Optimization also have some inherent limitations. For example, they are 

prone to getting trapped in local optima. Although the PSO algorithm has global search capabilities, in some cases, especially in 

high-dimensional spaces or under multiple constraints, it may still converge too early to local optimal solutions. The performance 

of the algorithm heavily relies on the choice of initialization parameters such as inertia weight and acceleration constants. 

Improper parameter settings may lead to slow convergence or poor results. Computational resource consumption: For large-scale 

multi-robot systems, the computational load of the PSO algorithm can become very large, especially when real-time planning is 

required, which may limit its efficiency in practical applications. Additionally, the convergence and stability of the PSO 

algorithm are not fully proven theoretically, which may cause some issues in certain industrial applications with strict 

requirements. 

IMPROVED PSO-SA ALGORITHM 

Basic Idea of the Improved PSO-SA Algorithm 

This paper intends to develop a hybrid algorithm, leveraging the rapid convergence characteristics of PSO and the global search 

capability of SA to achieve a better balance in optimization problems, avoid falling into local optimal solutions, improve the 

execution efficiency and computational accuracy of the PSO algorithm, and assist the algorithm in discovering the global optimal 

solution more rapidly during the search process. 

Random Acceptance Mechanism of SA 

Initialize the particle swarm, setting initial positions and velocities for each particle. Set the initial temperature T0, cooling rate, 

and the number of internal iterations n for simulated annealing, and update the positions and velocities of the particles using the 

standard PSO algorithm. 

The particle swarm guides its next evolutionary path based on the individual best solutions of each particle and the global best 

solution. However, when gbest is a local optimum, all particles are influenced and move towards the local optimum, leading to 

rapid convergence of the particle swarm and the emergence of local extrema or stagnation.[10] Therefore, during the velocity 

update process of the PSO algorithm, the disturbance mechanism of the simulated annealing algorithm[11] is introduced to assign 

a certain jump probability to the currently suboptimal particles. Individuals with fitness closer to the current optimal particle 

have a correspondingly higher probability of jumping. When such a situation occurs, we choose to replace the existing optimal 

particle to reduce the risk of the algorithm falling into a local optimal solution. This strategy helps improve global search 

capabilities and ensures that we can explore the optimal solution in a broader solution space. 
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For each particle, the fitness value of its new position is first calculated. If the fitness of the new position is better or equal, the 

position is accepted directly; otherwise, a decision on whether to accept the new position is made based on a certain acceptance 

probability. The formula is as follows: 

P =  𝑒− 𝛥𝐸
T                                                                                                    (3) 

Here, ΔE = f(xi(t+1)) - f(xi(t)) represents the energy difference, and T is the current temperature. If the randomly generated 

number is less than p, the new position is accepted; otherwise, the old position is retained.  

Update the temperature according to the cooling rate α. 

Tnew = T ∙  𝛼                                                                                   (4) 

Repeat steps 2 to 4 until a termination condition is met, such as reaching the maximum number of iterations or when the 

temperature drops below a certain threshold. In the aforementioned steps, the choice of T0, α, and n has a significant impact on 

the algorithm's performance and needs to be adjusted based on the specific problem. Initially, you can try setting a larger initial 

T, a higher α (e.g., 0.95), and a moderate n (e.g., 100 to 500 iterations). Monitor the convergence speed of the algorithm and the 

quality of the planned path, and adjust the parameters accordingly. Consider using adaptive strategies to adjust T and α, such as 

dynamically adjusting the decay rate of T based on the improvement magnitude of the current iteration, which can enhance the 

algorithm's flexibility and efficiency. In practical applications, further adjustments to the above process may be necessary, such 

as alternating between PSO and SA or introducing SA mechanisms into certain stages of PSO. The key to combining PSO with 

SA lies in balancing their contributions, ensuring both the efficiency of global search and avoiding premature convergence to 

local optima. In practical applications, fine-tuning of the algorithm may also be required to adapt to the characteristics of specific 

problems. 

The flowchart of the improved PSO-SA algorithm is shown in Figure 1. 

 

Figure 1. Flow chart of the algorithm 

EXPERIMENTS RESULTS  

Experimental Environment and Parameters 

To verify the effectiveness of the proposed algorithm, we designed simulation experiments with a few and many obstacles in a 

static environment. The algorithm was run on a WINDOWS 10 64-bit system using MATLAB R2018a, and all simulations were 

conducted using MATLAB language. 

The population size is set to 200 particles, with a maximum iteration limit of 500.To prevent collisions, the coefficient of the 

penalty function is set to 1000, learning factors (r1, r2) = 1.5, 1.5, initial inertia weight (w) = 1, inertia weight damping factor 
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(wd) = 0.98; for simulated annealing (SA) parameters, initial temperature (T_initial) = 1000, cooling rate = 0.99, and final 

temperature (T_final) = 1. 

Simulation Results 

To erify the effectiveness of the virtual target heuristic function, experiments were conducted using the Particle Swarm 

Optimization (PSO) algorithm and the proposed algorithm in a semi-enclosed map. The resulting path planning diagrams are 

shown in Figures 2 and 3, respectively. 

 

Figure 2. Path planning map of the semi-surrounded topographic particle swarm algorithm 

 

Figure 3. The algorithm path planning map of this paper 

In the above figure, the robot will move from the marked point at the lower left corner to the marked point at the upper right 

corner. The research findings indicate that when using the algorithm proposed in this study for path planning, the robot 

demonstrates faster response times and higher efficiency in obstacle avoidance, successfully escaping semi-enclosed terrain 

environments while adopting a more optimized travel route. Compared to the traditional particle swarm algorithm, this method 

significantly reduces the path length to reach the destination. 

Method Comparison 

To verify the advantages and effectiveness of the algorithm proposed in this paper, this study conducted 50 sets of simulation 

experiments for the proposed algorithm, the classic particle swarm algorithm, the simulated annealing algorithm, and the 

differential evolution (DE) algorithm in the same map environment, focusing on scenarios with dense obstacles. In data 

processing, the maximum and minimum path lengths were excluded, and subsequently, the average value and the mean squared 

error of the remaining data were calculated to assess the stability of these four algorithms in terms of performance. The data is 

presented in Table 1. 

Table 1. Comparison of Three Methods 

Method Average Optimal Fitness Standard Deviation Average Iteration Times to Convergence 

Algorithm in this paper (PSO) 1.4e-06 3.5e-07 620 

Standard PSO 3.2e-04 9.8e-05 850 

Simulated Annealing (SA)  5.6e-04 1.7e-03 900 

Differential Evolution (DE)  2.2e-05 6.3e-06 700 
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From the above data, we can observe that the algorithm in this paper achieves convergence with fewer average iterations than 

standard PSO, indicating its potential superiority in search efficiency. The proposed algorithm attains the lowest average optimal 

fitness, indicating that it finds solutions that are closer to the global optimum compared to standard PSO and SA, which produce 

higher fitness values suggesting less optimal solutions. By evaluating stability using standard deviation, the proposed algorithm 

shows a lower variance, emphasizing its consistent performance across multiple trials. Therefore, it converges faster, identifies 

solutions that are closer to being optimal, and exhibits greater stability. 

CONCLUSION 

This paper focuses on the path planning algorithm for collaborative robots and conducts a series of research. By combining PSO 

and SA algorithms, a new hybrid optimization strategy, the SA-PSO algorithm, is successfully developed. This algorithm enables 

faster escape from local optima and addresses path planning issues for collaborative robots in complex dynamic environments. 

The dynamic path planning strategy based on the algorithm in this paper can perceive environmental changes in real-time and 

quickly adjust strategies to adapt to dynamic and complex environments, improving the flexibility and adaptability of 

collaborative robots in practical applications. This dynamic path planning method optimizes paths for multiple robots 

simultaneously, achieving effective collision avoidance and collaboration among robots. To enhance the stability and robustness 

of the algorithm, additional in-depth research is necessary for achieving more refined parameter tuning. Furthermore, the 

dynamic environments addressed in this paper are primarily limited to simple, changing scenarios; future studies could extend 

the algorithm's applicability to more complex dynamic settings. Meanwhile, exploring more efficient and intelligent path 

planning methods by combining advanced technologies such as deep learning and reinforcement learning will bring new 

breakthroughs and opportunities to the development of collaborative robots. 
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