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Abstract:  

As demand response (DR) participants gradually loosen up, the number of new users participating in DR will continue to 

increase. Due to the small electricity consumption and wide distribution of residential users, they cannot participate in DR 

individually and need to be represented by load aggregators. However, for users who haven’t participated in DR before, the 

lack of historical response data makes it more difficult for load aggregators to predict their response potential. In this context, 

a response potential prediction model was constructed for such users. Firstly, based on the user's electricity consumption load 

and energy-saving awareness as the clustering criteria for the upper and lower layers, the DTW-K-medoids model is used to 

perform double-layer clustering on users, grouping users with similar electricity consumption behaviors and concepts into one 

group. Then, based on the clustering results, the electricity consumption data of residential users who have participated in DR 

among various types of users are used as the training set, and the Bi-LSTM algorithm is used to sequentially construct a 

response potential prediction model for each type of user. Finally, case analysis shows that the proposed model can effectively 

solve the problem of low prediction accuracy of response potential for users who haven’t participated in DR, and further reduce 

the assessment cost of load aggregators. 

Keywords: Residential users, Response potential prediction, DTW-K-medoids dual-layer clustering; Bi-LSTM algorithm. 

INTRODUCTION 

The current Demand Response (DR) mechanism divides participating entities into categories such as industrial users, commercial 

users, and residential users. Due to the high electricity consumption and high proportion of electricity costs for industrial and 

commercial users (Deng et al., 2023), they have great potential for response. Therefore, many references have conducted in-

depth research on the application of industrial and commercial users in DR (Lu et al., 2021; Xu et al., 2023). As the proportion 

of renewable energy in the power system gradually increases, demand side resources become increasingly valuable. Government 

departments expect more types of entities to participate in DR to further tap into the response potential of end users. However, 

the electricity consumption of low-power users such as residential users is relatively low and widely distributed, making it 

impossible for them to participate in DR as independent users. Therefore, government departments have introduced third-party 

entities - load aggregators (LA), and low-power users can seek LA to act as agents for their participation in DR (Li et al., 2024). 

As the agent, the LA needs to declare the response volume on the trading platform. Therefore, aggregators need to accurately 

predict the response potential of their proxy users to avoid corresponding penalties. Due to the irregular electricity consumption 

behavior of the residential user group (Lazzari et al., 2022), it increases the difficulty of LA in predicting the potential response 

volume. Therefore, in the context of user side liberalization, more and more scholars are studying how to improve the LA's 

prediction of the response potential of its proxy users. 

Reference (Zhou et al., 2024) uses K-means algorithm to cluster flexible loads such as air conditioners and dishwashers to 

determine the DR response potential of residential users. Case analysis shows that this method can improve the management 

ability of LA; Reference (J. Wang et al., 2023) proposes an evaluation method for the potential response of air conditioning for 

residential users. Obtain all user devices with similar adjustable features through aggregation algorithms, and establish an air 

conditioning load model to effectively solve the problem of LA delivering fines due to insufficient response ability; Reference 

(Duman et al., 2023) conducted a survey on the electricity usage behavior and sensitivity of residential users to electricity bills. 

The user's household energy management system will optimize their electricity consumption behavior based on the survey 

results. Residential users responding to electricity usage based on the instructions provided by the management system will 

effectively enhance their response potential; Reference (Sridhar et al., 2023) investigated the motivation of residential users to 

participate in DR through a questionnaire survey, and quantified the impact of various motivations on response potential to 

further improve prediction accuracy. 
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The above references have made important contributions in predicting the response potential of low-power users such as 

residential users. However, there are problems in the data collection process, such as a wide range of data sources and leakage 

of customer privacy, which make it difficult to operate in practical applications. It is worth noting that in November 2021, the 

National Development issued the "Management Measures for Power Selling Companies" document (National Development and 

Reform Commission, 2021), which stated that LA can access user historical electricity consumption data after obtaining 

authorization from their proxy customers. Therefore, studying how to use easily available data such as electricity consumption 

to predict the response potential of residential users is of great significance for improving operability and data privacy. Reference 

(Shi & Jiao, 2023) suggests that factors such as electricity consumption, peak electricity consumption during response periods, 

interruptible loads, electricity prices, and range of electricity consumption fluctuations are closely related to response behavior. 

They are used as characteristic variables to evaluate user response potential using machine learning algorithms; Reference 

(Shirsat & Tang, 2021) selected electricity consumption, response time, and temperature sensitivity factors as characteristic 

variables, and used a mixed density recurrent neural network to evaluate the DR potential of residential users; Reference (Kong 

et al., 2023) uses response time, incentive price, load baseline, actual load and other factors as characteristic variables, and uses 

a combination of long short-term memory network and mixed density network to obtain the probability distribution of user 

response quantity; Reference (Zhang et al., 2020) proposed a distributed modeling method based on the fully distributed 

alternating direction multiplier method to evaluate user DR potential, using electricity price, electricity consumption, historical 

response quantity, and response time as characteristic variables to construct the model; Reference (Kong et al., 2020) suggests a 

close relationship between electricity prices and user DR potential, and uses price elasticity as a characteristic variable to predict 

user DR potential using neural networks. 

The research approach of the above references is to select factors related to user response potential as feature variables to 

construct a prediction model. The variables taken, such as subsidy prices, temperature, time, etc., do indeed have a correlation 

with the user's response, but most references have demonstrated and believed that historical response is one of the key indicators 

for predicting response potential (Afzalan & Jazizadeh, 2019; Zhang et al., 2020). As more and more users learn about DR, more 

new users will participate in the future. Under this trend, the difficulty of LA predicting the response potential of users who 

haven’t participated in DR increases due to the lack of historical response data. Therefore, this article aims to fill the gap in this 

research field and explore how to accurately predict the response potential of users who have not participated in DR. This article 

proposes a response potential prediction model for residential users who have not participated in DR, which combines a DTW 

improved double-layer clustering model and a Bi-LSTM model. Firstly, divide the 24-hour day into response time periods and 

non-response time periods, and use a clustering algorithm improved by DTW to perform upper-level clustering on residential 

users, grouping users with similar electricity consumption behaviors during non-response time into one category. Then, based 

on the energy-saving awareness of each user, lower-level clustering is carried out for each type of user, further grouping users 

with similar electricity consumption behaviors and energy-saving concepts into one category. Finally, the electricity consumption 

data of residential users who have participated in DR in various types are used as the training set, and a Bi-LSTM response 

potential prediction model is constructed for each type of user in sequence. By using predictive models, the response potential 

values of residential users who did not participate in DR in each type can be obtained. 

CLUSTER ANALYSIS OF RESIDENTIAL USERS 

Reference (F. Wang et al., n.d.) indicates that if the load curve trends of users are similar, then these users have similar response 

behaviors during the response period. Therefore, this article takes this as a starting point, using load data as clustering basis, 

categorizing users with similar electricity consumption behaviors, and predicting the response behavior of new users based on 

the response behavior of users in the same category. Due to differences in education levels and environmental concerns among 

resident users, even if their load curve trends are similar, their response behaviors may differ during the DR period (Ballenger et 

al., 2017; Shekari et al., 2021; B. Wang et al., 2020). Therefore, this article uses the user's load curve and energy-saving awareness 

as the clustering basis to conduct a double-layer clustering of users, as shown in Figure 1. 
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Figure 1. Double layer clustering flowchart 

In the upper-level clustering model, users with similar electricity consumption behaviors are classified into the same category 

based on load data clustering. On the basis of the upper-level clustering results, based on the user's energy-saving awareness, 

lower-level clustering is carried out for each type of user in sequence. Through double-layer clustering, users with similar 

electricity consumption behaviors and energy-saving awareness are grouped together, and users in the same group have similar 

response behaviors during the DR period. 

Data preprocessing 

Due to the significant differences in electricity consumption among different residential users, this will result in the model 

being more sensitive to larger values. Therefore, this article normalizes the user electricity load data to ensure that the 

contribution of each value to the model is relatively balanced. Assuming the number of measurement points for the user's load 

data within a day is 𝑇, it 𝑃𝑖,𝑗,𝑡 indicates the power consumption of user 𝑖 at time 𝑡on day 𝑗, where 𝑡 ∈ 𝑇. 𝑃̄𝑖,𝑗,𝑡 is the normalized 

value of 𝑃𝑖,𝑗,𝑡, subsequent models are constructed based on the normalized load data. The expression is as follows: 

𝑃̄𝑖,𝑗,𝑡 =
𝑃𝑖,𝑗,𝑡

𝑚𝑎𝑥( 𝑃𝑖,𝑗,𝑡)
(1) 

Quantify the level of user energy-saving awareness 

This article refers to relevant references and combines practical situations (Ballenger et al., 2017; Shekari et al., 2021; B. Wang 

et al., 2020), selecting economic awareness, environmental change awareness, social responsibility awareness, and electricity 

conservation awareness to comprehensively reflect the user's electricity conservation awareness. The specific content of each 

awareness is shown in Table 1. 

Table 1. Specific Content of Energy Conservation Awareness 

Factors affecting energy-

saving awareness 
Concrete content 

Economic awareness 

Do you value the proportion of electricity expenses to household 

income and pay attention to the monthly changes in household 

electricity bills? 

Environmental change 

awareness 

Are you paying attention to the current environmental changes such 

as climate and ecosystem? 
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Social responsibility 

awareness 

Do you pay attention to personal lifestyle in daily life, such as 

choosing green transportation and reducing excessive electricity 

consumption, to fulfill corresponding social responsibilities? 

Electricity conservation 

awareness 

Have you developed the habit of turning off lights casually in daily 

life, and have you gained a general understanding of the power 

consumption of various electrical appliances? 

 

The current research references mainly use questionnaire surveys to understand the level of user awareness (B. Wang et al., 

2020; Z. Wang et al., 2020). However, this method has some shortcomings, such as respondents being easily influenced by 

social expectations and filling in answers that are not true to maintain their personal image. In addition, the questionnaire 

survey method has problems such as high labor costs and low efficiency. To solve the previously listed problems, this study 

proposes incorporating a survey on user energy-saving awareness into power service application software. After successfully 

registering in the power service application software, the user will enter the energy-saving awareness survey to 

comprehensively understand their attitude towards energy-saving awareness. The energy-saving awareness survey page is 

shown in Figure2. 

 

Figure 2. Energy saving awareness information collection page 

Principle of DTW algorithm 

Compared to the classic time series similarity calculation method of Euclidean distance, the outstanding feature of Dynamic 

Time Warping (DTW) algorithm is that it does not require the length of the time series to be consistent (Lee & Leung, 2023). 

Due to various real-world factors that constrain the data collection process, datasets often struggle to ensure one-to-one 

correspondence at time points, thereby limiting the applicability of Euclidean distance(Melnykov & Michael, 2020). The basic 

principle of the DTW algorithm can be summarized as follows(Yan et al., 2022): 

(1) For time series 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑛), the Euclidean distance between data points 𝑎𝑖 and 𝑏𝑗 can be 

expressed as 𝑝(𝑎𝑖 , 𝑏𝑗) = |𝑎𝑖 − 𝑏𝑗|. Therefore, a 𝑚 × 𝑛 distance matrix of dimensions can be formed. The expression is as 

follows: 

𝑝𝑚×𝑛 = (

𝑝(𝑎1, 𝑏1) … 𝑝(𝑎𝑖 , 𝑏1)
⋮ ⋱ ⋮

𝑝(𝑎1, 𝑏𝑗) ⋯ 𝑝(𝑎𝑛 , 𝑏𝑚)
) (2) 

(2) The combination of elements in the distance matrix 𝑝𝑚×𝑛 forms multiple curved paths 𝑄 starting from (𝑎1, 𝑏1) and ending 

at (𝑎𝑛, 𝑏𝑚), as shown in the following expression: 
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𝑄 = {𝑞1, 𝑞2, … , 𝑞𝐾} (3) 

In the formula, 𝑞𝐾 represents the 𝐾-th element in the curved path 𝑄, which needs to meet the requirements of boundary 

constraint, continuity, monotonic increasing, and number limitation (El Amouri et al., 2023). 

(3) The optimal bending path is obtained with the goal of minimizing the cumulative distance, as shown in the following 

expression:  

𝐷𝑇𝑊(𝑎, 𝑏) = 𝑚𝑖𝑛 √∑𝑝𝑖

𝑘

𝑖=1

(4) 

DTW-K-medoids clustering algorithm 

Due to the frequent problem of getting stuck in local optima in K-Means clustering algorithm (Sieranoja & Fränti, 2022), 

relevant scholars have proposed K-Medoids clustering algorithm to improve the accuracy of clustering. The K-Medoids 

clustering algorithm effectively solves the shortcomings of K-Means clustering by using the actual samples with the highest 

similarity to other sample points as the representative clustering centers. However, due to the fact that the K-medoids 

clustering algorithm uses Euclidean distance as a measure of similarity between sample points, the model is prone to problems 

such as abnormal sensitivity to noisy data, poor clustering performance for non spherical clusters, and lack of time elasticity in 

practical applications (Sobrinho Campolina Martins et al., 2024). This article combines the DTW algorithm with the K-

medoids clustering algorithm, and uses the DTW algorithm to calculate the distance between two sample data in the K-

medoids algorithm. The DTW algorithm can find the optimal bending path between two time series data, effectively solving 

problems such as local scaling and drift of the sequence. The flowchart is shown in Figure 3. The specific steps of the DTW-K-

medoids algorithm are as follows: 

For dataset 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑁}, the sample point 𝑎𝑖is a 𝑀vector of dimensions, 𝑎𝑖𝑗  represents the 𝑗-th data of sample point 𝑖. 

Assuming the initial cluster center point is 𝑎𝑥
∗, 𝑥 = 1,2, . . . 𝐾. 

1. Use the DTW algorithm to calculate the distance between each sample point and the initial cluster center point 𝑑(𝑎𝑖 , 𝑎𝑥
∗). 

2. Divide the dataset into 𝐾 classes to form a cluster set 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝐾}, 𝐾 ≤ 𝑁, where 𝑔𝑖 represents the 𝑖-th cluster. 

Calculate the cumulative distance between the sample point in the 𝑖-th cluster and the initial cluster center point, expressed as 

follows: 

𝐸 = ∑ ∑ 𝑑(𝑝, 𝑎𝑥
∗)

𝑝∈𝑔𝑥

𝐾

𝑥=1

(5) 

In the formula, 𝑝 represents all sample points in the 𝑥-th cluster, and 𝐸 represents the sum of distances between sample points 

in each cluster and the cluster center. 

3. Calculate the change in the sum of squared cumulative errors during iteration, expressed as follows: 

𝑆 = 𝐸𝑖 − 𝐸𝑖−1 (6) 

In the formula, 𝐸𝑖 represents the sum of squared cumulative errors obtained from the 𝑖-th iteration, and 𝐸𝑖−1 represents the sum 

of squared cumulative errors obtained from the (𝑖 − 1)-th iteration. 

4. If 𝑆 < 0, the latest center point is used as the cluster center point, and the remaining samples are divided into clusters closest 

to the latest cluster center point; If 𝑆 > 0, no changes will be made. 
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Figure 3. DTW-K-medoids clustering algorithm flowchart 

Cluster Effect Evaluation Index System 

Evaluating clustering effectiveness requires comprehensive consideration of multiple aspects, such as intra cluster compactness 

and inter cluster dispersion. Therefore, this article constructs an evaluation index system to comprehensively reflect the 

clustering effect. 

Davies⁃Bouldin Index (DBI) can be used to evaluate the tightness within clusters, focusing on the tightness within clusters and 

the separation between clusters (Guo et al., 2022). DBI calculates the relative distance between each cluster and its nearest 

cluster, with smaller values indicating tighter samples within the cluster. The expression is as follows: 

𝐷𝐵𝐼 =
1

𝑘
∑max

𝑖≠𝑗
(
𝑆𝑖 + 𝑆𝑗

𝐶𝑖𝑗

)

𝑘

𝑖=1

(7) 

In the formula, the distances between the 𝑖-th and 𝑗-th sample sets and that class's cluster center are denoted by 𝑆𝑖 and 𝑆𝑗, 

respectively; 𝐶𝑖𝑗 represents the distance between the 𝑖cluster center of the class and the 𝑗cluster center of the class. 

The Calinski ⁃ Harabasz (CH) index is calculated based on intra cluster dispersion and inter cluster compactness, using the 

intra class dispersion matrix to reflect intra cluster dispersion and the inter class dispersion matrix to reflect inter cluster 

compactness(Yu et al., 2023). The larger the CH value, the smaller the intra cluster variance and the larger the inter cluster 

variance. The specific formula is as follows: 

𝐶𝐻 =

𝑡𝑟(𝑆𝐵(𝐾))
𝐾 − 1

𝑡𝑟(𝑆𝑊(𝐾))
𝑁 − 1

(8) 

𝑆𝐵(𝐾) = ∑ 𝑃𝑘(𝑚𝑘 − 𝑚)

𝑘

𝑘=1

(𝑚𝑘 − 𝑚)𝑇 (9) 

𝐷𝐵𝐼 =
1

𝑘
∑𝑚𝑎𝑥 (

𝑆𝑖 + 𝑆𝑗

𝐶𝑖𝑗

)

𝑘

𝑖=1

(10) 

In the formula, 𝐾 represents the number of clusters; 𝑁 represents the number of samples; 𝑁𝐾 represents the number of samples 

in class 𝐾. 𝑆𝐵(𝐾) and 𝑆𝑊(𝐾) represent the inter class and intra class dispersion matrices, respectively. 𝑡𝑟(𝑆𝐵(𝐾)) and 

𝑡𝑟(𝑆𝑊(𝐾)) represent their traces, respectively; 𝑥(𝑘)
𝑖 represents the input vector of user 𝑖 in class 𝐾; 𝑃𝑘 represents the prior 

probability of the 𝐾-th type of user; 𝑚 represents the vector mean of all sample data; 𝑚𝑘 represents the vector mean of the 𝐾-

th type of user. 
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A PREDICTION MODEL FOR THE RESPONSE POTENTIAL OF RESIDENTIAL USERS 

The input variables for resident users used in this article are time series. Due to the characteristics of multiple time scales and 

nonlinearity in time series data, machine learning has poor information mining performance on time series data (K. Wang et al., 

2019). Deep learning models can effectively mine complex time dependencies in time series data and are specifically designed 

to handle long-term dependencies in data (Chen et al., 2023). Therefore, this article adopts deep learning algorithms to construct 

a resident user DR potential prediction model. 

Model Input Variables Selection 

This article constructs a prediction model based on the clustering results. Since the execution period 𝑇𝑑𝑟  of each DR is not fixed, 

The training set of the model consists of 75% of the load data 𝑃𝑘,𝑖,𝑗,𝑡
𝑑𝑟 , 𝑡 ∈ 𝑇𝑑𝑟  and response amount 𝑑𝑘,𝑖,𝑗,𝑡 , 𝑡 ∈ 𝑇𝑑𝑟  of users who 

have participated in DR, and the remaining 25% of the samples are used as the testing set of the model. 𝑃𝑘,𝑖,𝑗,𝑡
𝑑𝑟  and 𝑑𝑘,𝑖,𝑗,𝑡 

represent the power and response of user 𝑖 in category 𝐾 who have participated in DR at time t on the 𝑗-th day, respectively. The 

specific framework diagram is shown in Figure 4.  

 

Figure 4. Flow Chart of Input Variables Selection Process for Prediction Model 

Principle of Bi-LSTM model 

In recent years, LSTM has been widely used in fields such as speech recognition and computer vision. The structure of LSTM 

is shown in Figure 5.  

 

Figure 5. Working Steps of LSTM Model 

LSTM introduces gating mechanisms such as input gates, forget gates, and output gates to manage the information from the 

previous moment, resulting in dynamic changes in the weight of the network during each time step's cyclic process (Fang et al., 
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2024). The sigmoid activation function will determine which information is transmitted to the next neural unit. The specific work 

steps of LSTM are as follows (Dao et al., 2024): 

1. The forgetting gate calculates the output vector 𝑓𝑡 using the following formula: 

𝑓𝑡 = 𝜎(𝑤𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (11) 

In the formula, 𝜎 represents the excitation function; 𝑤𝑓 represents the weight of input features; 𝑥𝑡 represents the input value of 

the sample at time 𝑡; ℎ𝑡−1 represents the output value of the previous unit; 𝑏𝑓 represents the offset amount. 

2. The input gate calculates the value of 𝑖𝑡, which determines the information to be retained in the current stage. The expression 

is shown in formula 12. The Tanh layer calculates the candidate memory vector 𝑐̃𝑡, which is obtained from 𝑥𝑡 and the output 

ℎ𝑡−1, as shown in formula 13: 

𝑖𝑡 = 𝜎(𝑤𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (12) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (13) 

In the formula, 𝑤𝑖  and 𝑤𝑐  represent coefficients in their respective functions; 𝑏𝑖  and 𝑏𝑐  represent the deviations in their 

respective functions. 

3. Calculate the new state 𝐶𝑡, which is obtained by combining various outputs. The formula is as follows: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 (14) 

4. Calculate the judgment condition 𝑂𝑡 for the output gate, and obtain the model output value from 𝑂𝑡 and 𝐶𝑡. The formula is as 

follows: 

𝑂𝑡 = 𝜎(𝑤0 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏0) (15) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝐶𝑡) (16) 

In the formula, 𝑤0 represents the coefficients in the function; 𝑏0 represents the deviation in the function. 

From the above analysis, it can be seen that LSTM networks can only train past information and cannot mine future information. 

To make up for this deficiency, this article adds a reverse LSTM layer to the original LSTM infrastructure, forming a Bi-

directional Long Short Time Memory (Bi-LSTM), whose structure is shown in Figure 6. 

 

Figure 6. Structure diagram of Bi-LSTM network model 

In Figure 6, ℎ⃗  represents the hidden output sequence of the forward layer, and ℎ⃖⃗ represents the hidden output sequence of the 

reverse layer. The overall output sequence ℎ of the Bi-LSTM network model is composed of ℎ⃗  and ℎ⃖⃗ together, and the following 

are the expressions: 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀
→

(ℎ⃗ 𝑡−1, 𝑥𝑡 , 𝐶 𝑡−1), 𝑡 ∈ [1, 𝑇] (17) 

ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀
←

(ℎ⃖⃗𝑡+1, 𝑥𝑡 , 𝐶⃖𝑡+1), 𝑡 ∈ [1, 𝑇] (18) 

ℎ𝑡 = 𝜎(𝑤ℎ[ℎ⃗ 𝑡 , ℎ⃖⃗𝑡] + 𝑏ℎ) (19) 

In the formula, ℎ⃗ 𝑡−1 and ℎ⃖⃗𝑡+1 respectively represent the (𝑡 − 1)-th hidden state in the forward LSTM and the (𝑡 + 1)-th hidden 

state in the reverse LSTM; 𝐶 𝑡−1 and 𝐶⃖𝑡+1 represent the (𝑡 − 1)-th cell state in forward LSTM and the (𝑡 + 1)-th cell state in 

reverse LSTM, respectively. 
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The prediction accuracy of the Bi-LSTM model can be reflected by the MSE index. The expression is as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

𝑁

𝑖=1

2

(20) 

In the formula, 𝑦𝑖  represents the actual value; 𝑓(𝑥𝑖) represents the predicted value of the model; 𝑁 represents the number of 

model samples. 

EXAMPLE ANALYSIS 

Data Description 

In order to verify the effectiveness of the prediction model constructed in this article, 986 residential users were selected as case 

studies from actual horizontal projects. In order to fully analyze user electricity consumption behavior, this article selects 

weekend electricity load data as the model dataset. Each user dataset includes user electricity load data and user electricity 

awareness data. Among them, user load data is recorded every 30 minutes, with 48 data points per day for each user, and there 

is a significant difference in the magnitude of user load data. Therefore, in the clustering stage, the normalized user load dataset 

is taken as the research object. The energy-saving awareness data of each user is a vector data of 1 row and 5 columns. 

Residential user clustering results 

Before clustering users, it is necessary to determine the number of aggregated cluster classes. This article uses the elbow method 

to determine the appropriate number of clusters, and the results are shown in Figure 7. From the graph, it can be seen that the 

curve shows a sharp downward trend when the number of aggregated clusters is between 2 and 4. When the number of clusters 

exceeds 4, the curve shows a slow downward trend. Therefore, the optimal number of set clusters determined by the elbow 

method is 4. 

 

Figure 7. Elbow Method Results 

The clustering results of each user group are shown in Figure 8. From Figure 8, it can be seen that users are divided into four 

distinct categories: double peak users, flat peak users, inverted peak users, and evening peak users. Among them, the number of 

inverted peak users is the lowest. The load curve of dual peak users shows two significant peak periods, occurring between 8:00-

10:00 and 17:30-20:30, respectively. The electricity load power of peak users is relatively stable, and the electricity consumption 

period is mainly concentrated from 8:30 to 19:30. The characteristic of this type of users is that they do not reduce their electricity 

consumption during the lunch break period. The peak electricity consumption period of inverted users is different from other 

types of users. The number of this type of users is smaller than that of other types of users. They are in a low electricity 

consumption period during the day and their electricity consumption increases from midnight to early morning. The electricity 

consumption behavior of evening peak users is similar to that of double peak users. These users also have two peak electricity 

consumption periods, but the electricity consumption of evening peak users is more concentrated in the evening. 
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Figure 8. Upper-level clustering results graph 

The upper-level clustering divides users into four categories with different electricity consumption behaviors. Based on the 

results of the upper-level clustering, the lower-level clustering is carried out, and the clustering results are shown in Figure 9. 

From Figure 9, it can be seen that each user category is further divided into two subcategories in the lower-level clustering: 

strong energy-saving conscious users and weak energy-saving conscious users. Although there are users with similar electricity 

consumption behaviors, their energy-saving awareness shows certain differences. Overall, the resident user group shows a strong 

awareness of energy conservation. After double-layer clustering, residential users are divided into 8 categories. 

 

Figure 9. Importance ranking of feature variables 

In order to better reflect the relationship between energy-saving awareness and user response, this article defines a response rate 

indicator. Response rate refers to the ratio of the response completed by users at the response time on the response day to the 

electricity load at the same time on the day before the response day. The comparison chart of response rates for different types 

of users is shown in Figure 10. The expression is as follows: 

𝑐𝑎,𝑏,𝑡𝑑𝑟
=

∑ 𝑑𝑖,𝑗,𝑡
𝑎,𝑏

𝑡∈𝑇𝑑𝑟

∑ 𝑝𝑖,𝑗−1,𝑡
𝑎,𝑏

𝑡∈𝑇𝑑𝑟

, 𝑎 = 1,2, … , 𝑘 (21) 

In the formula, 𝑏 represents two types of users with strong energy-saving awareness and weak energy-saving awareness; 𝑐𝑎,𝑏,𝑡𝑑𝑟
 

represents the response rate of users with energy-saving awareness type 𝑏  among type 𝑎  users at response time 𝑡𝑑𝑟 ; 𝑑𝑖,𝑗,𝑡
𝑎,𝑏

 

represents the response amount of user with energy-saving awareness type 𝑏 and ID 𝑖 in type 𝑎 at time 𝑡 on the 𝑗-th day; 𝑝𝑖,𝑗−1,𝑡
𝑎,𝑏

 

represents the response amount of user with energy-saving awareness type 𝑏 and ID 𝑖 in type 𝑎 at time 𝑡 on the (𝑗 − 1)-th day. 
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Figure 10. Relationship between energy-saving awareness and response rate 

From the graph, it can be seen that among various user types, users with strong energy-saving awareness exhibit higher response 

rates than users with weaker energy-saving awareness. This indicates that although users belonging to the same type of electricity 

consumption behavior have varied degrees of energy-saving awareness, their response behavior shows significant differences. 

This indicates the need for more detailed classification of users of the same electricity type to improve the accuracy of model 

predictions. 

Comparison of clustering algorithm effectiveness 

On the basis of the original K-Medoids clustering algorithm, this article adds the DTW algorithm and proposes the DTW-K-

Medoids clustering algorithm to improve the shortcomings of the original K-Medoids clustering algorithm. This article compares 

the clustering performance of the DTW-K-Medoids clustering algorithm with the classic clustering algorithms K-Means and K-

Medoids clustering algorithms, in order to analyze the superiority of the improved algorithm. 

In order to better display the differences in clustering performance between clustering algorithms in the form of images, 

Multidimensional Scaling (MDS) is used to process the dataset, mapping the 48-dimensional user load data to a 2D space (H. 

Wu et al., 2022). By processing the data, a point in the two-dimensional graph can be used to represent a residential user, which 

includes the user's 48-dimensional electricity load curve data. The comparison between DTW-K-Medoids clustering and K-

Means clustering is shown in Figure 11. 

 

Figure 11. Comparison of DTW-K-Medoids clustering and K-Means clustering effects 

From Figure 11, it can be observed that the DTW-K-Medoids clustering algorithm and K-means clustering algorithm maintain 

consistency in the number of clusters, but there is a significant difference in their classification results. Through comparative 

analysis, it was found that the clustering results of the DTW-K-Medoids clustering algorithm are more reasonable, and data 

points with similar distances are classified as the same type. In contrast, the K-means clustering algorithm is more susceptible 

to the influence of noise points. In Figure 11(b), we can observe that the K-means clustering algorithm is affected by noise 

points (0.012, 0.011), (0.016, 0.0091), etc., resulting in distorted clustering results for user type 2. In addition, based on the K-

means clustering principle, the contour shape of its clustering results tends to be circular, making the clustering results of 

certain data points appear unreasonable and unable to effectively explore the potential information between data points. 
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Section 2.5 of this article constructs an evaluation system that includes multiple clustering algorithm evaluation indicators, 

aiming to comprehensively evaluate the clustering effect of the model. The performance of various clustering algorithms under 

each indicator is shown in Table 2. From the perspective of DBI indicators, the DTW-K-Medoids clustering algorithm 

proposed in this article has the smallest DBI value, indicating that the algorithm clusters the closest intra cluster samples after 

clustering; From the perspective of CH index, the DTW-K-Medoids clustering algorithm has the highest CH value, indicating 

that the variance between clusters is relatively large, and the distance between clusters is far, which can effectively distinguish 

between clusters; In terms of model computation time, due to the complex principle of the DTW-K-Medoids clustering 

algorithm, it requires the longest computation time. On the contrary, the K-means clustering algorithm requires the shortest 

computation time. Taking into account various factors, it can be concluded that the DTW-K-Medoids clustering algorithm 

proposed in this article performs the best in terms of overall performance. 

Table 2. Performance of Various Indicators of Different Clustering Algorithms 

Types of clustering algorithms DBI CH Calculation time/s 

DTW-K-Medoids  0.587 61.325 24.69 

K-Medoids  0.646 54.326 20.37 

K-means  0.712 36.785 1.56 

 

Prediction model for residential user response volume 

This article uses the Python 3.9 platform and its sklearn function package to construct a prediction model. During the 

construction of the Bi-LSTM model, some parameters need to be set, and the specific parameter settings are shown in Table 3. 

Table 3. Bi-LSTM Model Parameter Setting Values 

Parameter Numerical value 

Number of hidden layers 2 

Output power savings 1 

Loss rate 0.2 

loss function MSE 

Activation function Sigmoid 

Learning rate 0.1 

The number of neurons in the hidden layer 128 

Number of hidden layer two neurons 64 

 

According to the clustering results in section 4.2, users are subdivided into 8 categories, and predictive models are constructed 

for each category of users in sequence. The training set of each model consists of the load curve and response dataset of 75% 

of users who have participated in the response in that category, while the test set consists of the electricity load curve data and 

response dataset of 25% of users who have participated in the response. In order to highlight the superiority of the Bi-LSTM 

model, this article also constructed an LSTM model and compared the prediction results of the two models. This article 

randomly selected 246 users from 986 users as the test set to evaluate the effectiveness of the model. Due to the large amount 

of data in the test set, 45 users were randomly selected and the prediction accuracy of different prediction models was 

compared and analyzed. The comparison chart of the prediction effect of the prediction model is shown in Figure 12. 
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Figure 12. Comparison of Different Prediction Models 

By comparing and analyzing Figure 12(a) and Figure 12(b), it can be observed that the error between the predicted and true 

values of the Bi-LSTM model is generally smaller than that of the LSTM model, and the overall error rate has decreased by 9.5 

percentage points. This improvement will enhance the market competitiveness of LA. Based on the Bi-LSTM response 

prediction model, LA can more accurately provide personalized energy management services and preferential schemes to 

users. This can enhance the competitiveness of LA in the market, attracting more users to join LA services. 

After further zooming in on the image, we found that the LSTM model had a significant error in predicting the response of the 

18th resident user, while the Bi-LSTM model predicted a value closer to the actual value for that user. Therefore, an in-depth 

analysis was conducted on the 18th user, with a focus on the potential relationship between their electricity load curve during 

the response period and the model's predicted values, as shown in Figure 13. 

 

Figure 13. Analysis of Electricity Consumption Behavior of User No.18 

Figure 13(a) shows that the user's electricity consumption showed a slight increase from 16:00 to 17:00, but suddenly 

decreased between 17:00 and 17:30, followed by a rapid increase in electricity consumption. The trend of the user's actual 

response curve is similar to that of the electricity load curve. From the analysis of Figure 13(b), it can be found that during the 

time period of 17:30, the LSTM model has the most significant error between the predicted values and the true values, with an 

error value of 0.14Kw.h. However, the Bi-LSTM model has reduced its prediction error value to 0.06 Kw.h during this period, 

and the Bi-LSTM model has a better prediction effect. Compared to the LSTM model, the Bi-LSTM model introduces the 

function of bidirectional information flow, which not only focuses on historical data before the current time step, but also 

focuses on future data after the current time step. The electricity load of user 18 showed an upward trend before 5:30, but 

during the time period of 5:30, the electricity load suddenly decreased, and the LSTM model was unable to effectively mine 

the time series information, resulting in the maximum prediction error value of the LSTM model during this period. However, 

due to the introduction of bidirectional information flow in the Bi-LSTM model, it can more comprehensively capture the 

dependency relationships in sequence data, which helps to improve the accuracy of prediction. 

Analysis of Evaluation Expenses for LA 

The LA is entrusted by the proxy user to declare the response volume on behalf of the user in the DR market. If the LA 

declares a response potential that exceeds the user's own, the LA will be punished for not being able to complete the declared 

response volume. This article calculates assessment fees based on the DR effectiveness evaluation standards and reward and 

punishment mechanisms issued by Guizhou Province, China, and calculates the profit changes of LA using the predictive 

model constructed in this article and other predictive models (Guizhou Provincial Energy Bureau, China, 2023). When the 

actual response volume of the users represented by the LA is lower than the bid winning response volume, the grid side will 

charge a response assessment fee to the LA, and the cost calculation formula is shown in formula 22: 

𝐶𝑡 = (𝑅1 − 𝑅2) ∗ 𝑝 ∗ 𝑀 (22) 

In the formula, 𝐶𝑡 represents the assessment fee that the LA should pay at the moment 𝑡; 𝑅1 represents the amount to be 

completed; 𝑅2 represents the actual response amount; 𝑝 represents the clearing price; 𝑀 represents the penalty factor, which 

defaults to 0.5 in the file. 

This article calculates the difference in assessment costs between different models based on this formula, as shown in the Table 

4. Through calculation, it was found that compared to other models, the LA, based on the prediction results of the model 
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proposed in this article, delivered the least assessment fee, with a maximum reduction of 498.91 CNY. The predictive model 

constructed in this article can help LA better understand the changing trends and risks of user electricity consumption behavior, 

and timely identify potential energy supply-demand imbalances. By timely adjusting energy supply and demand, LA can 

reduce market transaction risks and reduce energy operating costs. 

Table 4. Physical meaning and direction of indicators 

Model type MSE Assessment fee (CNY) 

A predictive model based on single-layer 

clustering and LSTM 
9.74 1856.36 

A predictive model based on double-layer 

clustering and LSTM 
7.85 1524.58 

A predictive model based on double-layer 

clustering and Bi-LSTM 
5.94 1357.45 

 

CONCLUSION 

Against the backdrop of the continuous popularization of DR, diversification of participating entities will become a future trend. 

Under this trend, the position of LA in the electricity market will be further enhanced. As the number of users participating in 

DR increases, LA face the challenge of accurately assessing the response potential of customers who have not participated in 

DR. Therefore, this article constructs a response potential prediction model that combines clustering algorithm and Bi-LSTM 

algorithm to improve the predictive ability of LA for customer response potential. 

This article collects actual case data and evaluates the effectiveness of the model through examples. The following conclusions 

are drawn: 

1. The existing references mainly conduct single-layer clustering based on user electricity load data. However, this article adopts 

a double-layer clustering model, using user electricity load data and energy-saving awareness as the clustering basis. Case 

analysis shows that clustering users based solely on electricity load data will affect the prediction accuracy of the model. Among 

users with similar electricity consumption behaviors, those with strong energy-saving awareness showed higher response rates 

than those with weak energy-saving awareness. Users with different energy-saving awareness showed significant differences in 

their response behaviors. Therefore, using user electricity load data and energy-saving awareness as clustering criteria will 

improve the accuracy of model prediction. 

2. In order to improve the accuracy of clustering, this article introduces the DTW algorithm to improve the K-Medoids algorithm 

based on its shortcomings. Through case analysis, it was found that although the DTW-K-Medoids algorithm has the longest 

running time, it performs the best on the DBI and CH metrics compared to other models. This indicates that the DTW-K-Medoids 

algorithm has the closest intra cluster samples after clustering, and the distance between clusters is relatively far, which can 

effectively distinguish between different cluster classes. Taking into account various factors, the DTW-K-Medoids algorithm 

proposed in this article performs the best in terms of overall performance. 

3. This article constructs a Bi-LSTM prediction model based on the LSTM model. The Bi-LSTM prediction model introduces 

the function of bidirectional information flow, which can deeply mine the information of time series data. By using this model, 

the LA can more precisely provide users favored schemes and individualized energy management services, increasing their 

market competitiveness and lowering potential risks. 
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