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SUMMARY: Background: Accurate diagnosis of faults in metal oxide varistors (MOV) is crucial for the safe operation of 

power systems, and the deterioration of MOV under continuous pulse impacts can be more severe. To effectively improve the 

fault diagnosis rate, this paper proposes a fault diagnosis algorithm based on Principal Component Analysis (PCA) and Grid 

Search-optimized Support Vector Regression (GS-SVR).Objective, The objective of this study is to propose an effective fault 

diagnosis algorithm that accurately predicts the fault state of MOV under single and continuous pulse impacts, while 

reducing the correlation between indication indicators through dimensionality reduction. Method: The proposed experiment 

involves conducting a comparative test on MOV with different time intervals between impacts, on the order of 10 seconds. 

The data collected from this experiment, with a time resolution of 10 seconds, will be subjected to dimensionality reduction 

using PCA to reduce the correlation between the original indicators. Finally, the GS-SVR model will be employed to analyze 

and predict the effects of single and continuous pulse impacts on MOV. Results: Experimental results demonstrate that the 

GS-SVR model achieves a mean square error of less than 0.00057 in predicting single pulse impacts and still exhibits certain 

effectiveness for irregular pulse impacts, such as continuous pulses. Conclusion: The proposed fault diagnosis algorithm 

based on PCA and GS-SVR can effectively improve the fault diagnosis rate of MOV, and accurately predict the fault state of 

MOV under single and continuous impulse shock. This is of great significance to the safe operation of power system. 

key words: Metal Oxide Varistor； Principal Component Analysis； Grid Searc； Support Vector Machine, Continuous 

Pulse Impact 

 

1. INTRODUCTION 

Metal oxide varistors (MOV) are widely used lightning protection devices in power and electrical systems. They possess the 
characteristic of varying resistance with voltage sensitivity and can rapidly respond to discharge surge currents, interrupting 
sustained current flow [1]. However, these devices are prone to aging or deterioration issues. After each protection against 
lightning or overvoltage threats, their electrical performance gradually undergoes irreversible degradation until complete 
failure. Therefore, in practical production, extensive research has been conducted to real-time monitor the performance status 
of MOV devices, identify highly deteriorated devices, and mitigate operational risks to critical system locations caused by 
damaged protection devices [2,3]. 

Researchers have evaluated the degree of deterioration of MOV devices by analyzing their microphysical properties under 
impacts, cumulative energy data, temperature rise data, and static sampling data. In references [4,5], researchers studied the 
thermal characteristics and shock resistance of surge arresters under lightning current impacts. In reference [6], the aging 
characteristics of zinc oxide surge arresters under multiple lightning strikes were investigated. In references [7,8], the failure 
modes of varistors under impulse voltage were studied using multiple pulse waveforms. In references [9,10], thermal effects on 
surge arresters under lightning strikes were simulated using finite element methods. In reference [11], multiple pulse impact 
experiments on varistors were conducted, and the variation patterns of their electrical parameters were summarized, revealing a 
significant decline in their withstand characteristics after reaching the threshold. Reference [12] supplemented the study of the 
double Schottky barrier attenuation phenomenon in varistors and explained the influence of defect structures caused by 
manufacturing processes on the deterioration mechanism. 

In recent years, many researchers have chosen data-driven algorithms combined with sampled data from MOV devices for 
statistical modeling and exploring the degree of device deterioration. In reference [13], researchers analyzed the harmonic 
characteristics of leakage current during the deterioration process of varistors, proposed an optimized leakage current 
component extraction algorithm based on fast Fourier transform, and compared it through simulation tests. They successfully 
achieved precise detection of the harmonic resistive component, thereby diagnosing the degree of device deterioration. In 
reference [14], researchers analyzed parameter data obtained from experiments that characterized MOV deterioration and used 
neural network algorithms to establish a unified model, enabling numerical prediction of specific device indicators. In 
reference [15], researchers proposed a monitoring model for MOV based on genetic algorithms, optimizing the parameters 
reflecting device deterioration in the equivalent model to monitor the degree of deterioration. In references [16-19], researchers 
further applied various optimization algorithms based on multi-pulse MOV experimental data, discussed and compared the 
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advantages and disadvantages of different methods, providing effective references for the practical deployment of device 
deterioration monitoring. 

However, most of the aforementioned studies on continuous surges mainly focus on lightning pulses with time intervals 
ranging from tens to hundreds of milliseconds. Under such time intervals, the heat dissipation of MOV valve discs can be 
negligible, and the process can be considered adiabatic, having minimal effect on MOA electrical performance. However, for 
continuous impacts at the magnitude of tens of seconds, different time intervals can result in significant differences in 
temperature rise and noticeable changes in electrical performance. If the final temperature rise is the same under different 
impact intervals, the differences in electrical performance may not be significant when solely judged by the number of impacts 
or the amplitude. 

Therefore, this experiment simulates the scenario where MOV is subjected to continuous overvoltage impacts in the laboratory 
to study the relationship between different interval times and MOV temperature rise, aiming to provide a basis for determining 
the MOV. 

2 Methodology and Experimental Design 

2.1 Experimental Design and Data Collection 

In this study, to quantitatively evaluate the health status of Metal Oxide Varistors (MOV), it is necessary to obtain various 
electrical parameters of the devices during the degradation process. Therefore, an experimental setup was designed using a 
laboratory-based lightning impulse generator to simulate lightning surges and perform consecutive impact experiments. Data 
sampling and recording were conducted before and after each impact. The entire impact experiment was carried out in the 
electrical laboratory of Hubei University of Technology. A total of 28 new MOV devices were selected for the impact tests, 
labeled as A1 to A11, B1 to B7, C1 to C7, and D1 to D7. All devices had the same specifications: 7D241K, with a nominal 
varistor voltage V1mA of 240V and a maximum discharge current In of 1.2kA. Under the actual experimental conditions and 
equipment, the collected electrical parameters of the MOVs included varistor voltage before and after impact, leakage current 
(total current) before and after impact, and nonlinearity coefficient. 

During the simulation of overvoltage impacts, continuous impacts with the same amplitude but different time intervals were 
applied to each device. The time interval between impacts was set to 10 seconds, and five groups of experiments were 
conducted, consisting of 1, 2, 3, 4, and 5 consecutive impacts. Each group of experiments involved five consecutive impacts, 
with data collection and recording of the device's electrical parameters before and after each impact. After each impact, the 
tested device was allowed to cool to room temperature before the next impact. 

During the impacts, consecutive pulses with the same amplitude but different time intervals were applied to each MOV. The 
time intervals for Groups A, B, C, and D were set to 60 seconds, 10 seconds, 20 seconds, and 30 seconds, respectively. Group 
A measured the parameters after each individual impact, while the other groups underwent 5 consecutive impacts followed by 
a 60-second cooling period before collecting and recording the electrical parameters of the MOVs and continuing with the 
consecutive impacts. 

The sampled parameters in this experiment included the baseline electrical parameters of the MOVs: P1 leakage current 
magnitude I, P2 varistor voltage U at room temperature after impacts, P3 nonlinearity coefficient α, P4 parallel resistance RP, 
and P5 parallel capacitance CP. Additionally, the total number of impacts and the temperature rise during the impact duration 
were recorded. The varistor voltage, leakage current, and nonlinearity coefficient were measured using a varistor tester, while 
the parallel resistance and capacitance were measured using a bridge tester. 

2.2 Data Processing for Single-Impact Group 

After conducting multiple single-pulse impact experiments on MOVs labeled as A1 to A11, a total of 485 sets of experimental 
data were obtained. After organizing and summarizing the data, the data from A1 to A8 were selected as the training set for 
subsequent analysis and modeling, while the data from A9 to A11 were used as the test set to evaluate the performance of the 
constructed model. Each dataset in the training set included five electrical parameter features: P1 to P5. The parameters 
measured before and after each impact were averaged to obtain the trend of each electrical parameter for devices A1 to A11 
over the number of impacts, as shown in Fig. (1). 
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Fig. (1). Variation Trend of Electrical Parameters for A1-A11 with Number of Impacts 

 

For each pulse, the current magnitude is the same, but the energy absorbed by different varistors is evidently different. In the A 
group experiments, each MOV device was impacted every 60 seconds, and the device cooled down to room temperature before 
the next impact. However, the span of the number of impacts ranged from 20 to 68. It is unreasonable to evaluate the 
degradation of varistors based solely on individual parameters like the number of impacts. From the figure, we can observe that 
the trends of electrical parameters for each device with the number of impacts are quite similar, and the data distribution is 
relatively dense. As the number of impact tests increases, the room temperature varistor voltage, nonlinearity coefficient, and 
parallel resistance of the MOV devices show a decreasing trend. The variation of parallel capacitance initially fluctuates and 
then slowly increases. The leakage current is concentrated in the range of 0-1μA, and after a certain impact, there is a 
noticeable positive gradient increase in the leakage current. However, there are also some anomalies, such as an increase in the 
nonlinearity coefficient after the 17th impact for device A6. Therefore, considering the comprehensive changes in all measured 
parameters and analyzing the overall trend is a reasonable approach to diagnose device degradation. 
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Principal Component Analysis (PCA) is a statistical method for dimensionality reduction, which reveals the internal structure 
of multiple variables by examining their correlations. It helps to extract a few principal components that represent the 
comprehensive variation patterns of multiple parameters in the original data. Thus, for the collected MOV electrical parameter 
data, PCA can be used to represent the multi-parameter variation patterns using one-dimensional data. For each numbered 
MOV device, PCA is applied to the data obtained from its impact experiments, and the first principal component is extracted, 
representing the original 11-dimensional data with a new 1-dimensional representation. The average proportion of the first 
principal component in the total variance for different numbered MOV devices reaches 0.73. This indicates that the one-
dimensional data obtained after dimensionality reduction effectively capture the hidden patterns and information in the original 
high-dimensional data. 

The first principal component data corresponding to devices A1-A11 are analyzed and normalized. It can be observed that the 
values of the first principal component for each device show an increasing trend with the number of impacts, and the specific 
trends are generally similar. Taking the normalized first principal component of A11 as an example in Fig. (2), PCA achieves 
the projection of data onto a new feature space, where each principal component is a linear combination of the original 
features. This makes the principal components easier to interpret and helps us understand the key factors and patterns in the 
data. We can consider this trend as representing the real-time physical degradation of MOV devices after experiencing impacts, 
consistent with the understanding that the performance of the devices deteriorates with an increasing number of impacts. The 
value of the first principal component corresponding to a certain number of impacts reflects the device's degradation state at 
that moment, where a larger value indicates a more severe damage to the device. 

 

Fig. (2): Trend of Normalized First Principal Component for A11 with Number of Impacts 

2.3 Data Processing for Continuous Impact Group 

After the entire impact procedure, all devices were thoroughly damaged. Based on the judgment of multiple experimenters and 
real-time examination of the electrical parameters and appearance of the devices after impacts, devices that exhibited 
significant degradation or visible damage to the casing were identified as having lost their protective capability. This state was 
defined as a highly degraded condition and used as a label for the input of the raw data. Each device in this state corresponded 
to a numerical value representing the degree of degradation, calculated using PCA. In addition to the basic electrical 
parameters, the electrical performance of the MOVs is closely related to temperature. 

Li Pengfei concluded from experiments conducted in the microsecond and millisecond time scales that the internal modules of 
MOVs accumulate heat almost instantaneously, causing a rapid increase in temperature. From the perspective of energy 
convection exchange, this process can be regarded as an adiabatic temperature rise process [20]. 

The temperature rise is related to the energy absorbed by the varistor. The energy absorbed by the varistor's valve disk (E, 
measured in joules) is given by: 

𝐸 = ∫ 𝑢𝑖𝑑𝑡
𝑡0

0

(1) 

In the equation, u represents residual voltage in volts (V), i represents the impulse current in amperes (A), and t0 represents the 
duration of the current in seconds (s). 
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The temperature rise of the valve disk (ΔT, measured in Kelvin) is related to the injected energy E by the following 
relationship: 

Δ𝑇 =
𝐸

𝑚𝑐𝑝
(2) 

Formula (2) can be alternatively expressed as: 

Δ𝑄 =
Δ𝑊

Δ𝑉𝜌𝑐𝑝
(3) 

In Formula (3), ΔV represents the volume of the MOV unit, ρ represents the volume mass of the MOV (averaging at 5600 
kg/m^3), and cp represents the specific heat capacity of the MOV (made of zinc oxide material) at 20°C, approximately 500 
J/(kg·°C). 

In this experiment, the temperatures before and after each of the five consecutive impacts were recorded. The experiment 
aimed to discuss the degradation state and lifespan distribution of MOV in its normal condition. Under the same magnitude of 
impact current and pulse duration, a higher temperature indicates that the pulse injected more energy into the MOV. During a 
single impact process, the accumulation of heat is not very significant due to factors such as heat dissipation speed. The 
temperature rise is regulated by various factors, resulting in a relatively small temperature increase. However, during the 
process of continuous impacts, energy injection is continuous, and the MOV does not have enough time for effective heat 
conduction and dissipation. Previous impacts cause the internal temperature of the MOV to continue to rise. Before the next 
impact arrives, the MOV does not have enough time to cool down. This continuous accumulation of heat leads to a continuous 
increase in the temperature of the MOV, which in turn triggers more severe degradation. Therefore, the temperature rise during 
the final pulse process of the continuous impacts, which can be considered as an adiabatic process, is selected as the parameter 
to extract, as it exhibits a more pronounced temperature rise effect. 

Fig. (3) takes the temperature rise data of A1-D1 as examples. The data from groups B, C, and D show clear regularity and 
better fit the degradation characteristics of the MOV. 

 

 

Fig. (3) The trend of temperature rise during the fifth pulse of impacts (A1-D1) with the number of impacts. 

 

Based on the results mentioned above, the temperature rise data for groups B, C, and D were added and standardized. Seven 
sets of data within each group were selected, and the degradation level of each data sample was calculated. This degradation 
level was represented by an array ranging from 0 to 1, indicating the degree of degradation on a linear scale (normalized PCA), 
where 0 represents no degradation and 1 represents maximum degradation. These degradation level values were stored in a 
designated list. Additionally, the group labels (1 to 7) to which each data sample belongs were stored in another list. All the 
data were then sorted based on the degradation level list, and the merged dataset was rearranged using the sorted indices. This 
was done to better understand and visualize the data in subsequent analyses. Finally, the source information of each sample 
was added as a new column to the sorted dataset, labelling the group affiliation of the new data points. 
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Fig. (4) shows the scatter plot of the degradation distribution for each group after undergoing the aforementioned processing. 
The degradation distribution trends for groups B, C, and D are similar to that of group A. 

 

 

Fig. (4) The scatter plot of the deteriorated distribution for groups A to D 

 

3 Model Validation and Analysis 

3.1 Algorithm Selection 

3.1.1 Support Vector Machine (SVM) 

Support Vector Regression (SVR) is a branch of Support Vector Machine (SVM) that was proposed. Its basic idea is to map 
the input space to a high-dimensional space using a kernel function and then find the optimal classification plane for the 
original sample set. This plane minimizes the errors between all samples and the optimal classification plane. SVR has the 
following characteristics: 

Efficient Nonlinear Classifier: SVR constructs a hyperplane in a high-dimensional space, making it suitable for solving 
nonlinear classification problems. By using a kernel function, SVR can map the low-dimensional input space, such as the 6 to 
7 groups representing the degradation of MOV, to a high-dimensional feature space, enabling it to handle nonlinear 
relationships effectively. Robustness: SVM selects the decision boundary by maximizing the margin, making it robust to noise 
and outliers. In the case of MOV, there may be outliers or noise due to manufacturing processes and other factors. However, 
SVM can still find a good classification boundary. Small Sample Size: SVR is an algorithm based on structural risk 
minimization, with a focus on support vectors, which are the samples closest to the decision boundary. Since the degradation 
parameters of the MOV involve only a small number of samples for model construction, SVR is highly effective for such small 
sample problems[21,23]. 

Let the linear regression function established in the high-dimensional feature space be represented by Formula (4): 

𝑓(𝑥) = 𝑤T𝜑(𝑥) + 𝑏 =∑𝛼𝑖𝑦𝑖𝜑(𝑥𝑖)
T𝜑(𝑥) + 𝑏

𝑚

𝑖=1

(4) 

In the equation, 𝒙𝒊 represents the input vector of the i-th sample, 𝒚𝒊 represents the output value of the sample, w = (w1, w2, ..., 
wn)T represents the weight coefficient vector, 𝝋(𝒙𝒊) represents the nonlinear mapping function, 𝒇(𝒙) represents the estimated 
value of y, and b represents the constant term. 

The construction of the optimal classification plane can be transformed into a quadratic programming problem, as shown in 
Formula (5): 
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(5) 

The constraint conditions can be represented by Formula (6): 

{
 
 

 
 ∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑛

𝑖=1

= 0

0 ⩽ 𝛼𝑖 ⩽ 𝐶

0 ⩽ 𝛼𝑖
∗ ⩽ 𝐶

(6) 

In the equation, 𝜶𝒊 represents the Lagrange multiplier associated with each sample, ε represents the linear insensitive loss error, 
and C represents the penalty factor. A larger value of C indicates a stronger penalty for samples with errors greater than ε, 
while a smaller value indicates a weaker penalty. 

Finally, SVR can be represented by Formula (7): 

𝑓(𝑥) =∑(𝛼
^

𝑖 − 𝛼𝑖)

𝑚

𝑖=1

𝑘(𝑥𝑖
T𝑥) + 𝑏 (7) 

In the equation, 𝒌(𝒙𝒊
𝐓𝒙) =  𝝋(𝒙𝒊)

𝐓𝝋(𝒙𝒋) represents the kernel function. 

3.1.2 GS-SVR Algorithm 

The grid search algorithm was originally used to solve constrained nonlinear optimization problems. The basic steps of the 
algorithm are as follows: first, set a larger step size and a range for the parameters C and g by adjusting the grid division 
multiple times. This helps roughly determine the approximate range of the optimal parameter combination, thereby narrowing 
down the search range and reducing the computational complexity after grid division, thus improving the computational speed 
of the model. Then, set a reasonable range to constrain the parameters C and g, and perform fine grid division with a smaller 
step size. Combine the values of each parameter and generate a grid of all possible combination results. Next, use each 
combination for SVR training and employ cross-validation with the minimum root mean square error on the training set as the 
fitness function to search for optimal parameters [24]. Finally, when the minimum root mean square error is achieved, the 
optimal result graph under the selected search is obtained, and the optimal combination parameter values are calculated. The 
advantages of this algorithm are as follows: 1) It can simultaneously search multiple parameters and obtain the "optimal" 
combination. 2) It can avoid the problem of multiple solutions caused by parameter coupling. 3) It is computationally efficient 
as it can be executed in parallel [25]. 

First, the required input variables are determined using dimensional analysis. On this basis, different input combinations are 
selected and normalized. The SVM model is optimized using the grid search and cross-validation methods for different 
training sample ratios and input combinations. The GS-SVR model with the best input combination is established, and the 
distribution patterns of the model's hyperparameters C and g are analyzed. The entire workflow of the GS-SVR model is 
shown in Fig. (5). 
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Fig. (5): GS-SVR Model Process 
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3.2 Degradation Model 

3.2.1 Model Construction Process 

By applying the GS-SVR algorithm, a numerical regression modeling can be established for the degradation state of MOV 
devices using the A, B, C, and D groups' MOV electrical parameter data and their corresponding first principal component data 
obtained from impact experiments. Once the model is constructed, it can take a new set of electrical parameters as input and 
output a numerical value reflecting the degree of device degradation, ranging from 0 to 1. When this value exceeds a threshold 
(estimated based on the distribution of the first principal component values corresponding to completely damaged MOVs in the 
respective groups), it is considered that the device is completely damaged after the impact. The overall construction process of 
this study is illustrated in Fig. (6). 
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Fig. (6): Overall Process for MOV Degradation State Diagnosis 

 

As the degradation state of a device changes, its corresponding single electrical parameter exhibits different distribution 
patterns in the data space, indicating its inherent regularity. As shown in the flowchart, when the number of measurements of 
variability (MOV) reaches a certain threshold, more data on the sampled electrical parameters can be obtained, leading to a 
more comprehensive understanding of the distribution patterns of each electrical parameter. Therefore, from a statistical 
perspective, the more data available, the stronger the robustness of the model constructed based on the data. This results in 
more accurate predictions of the degradation state values for new data, aligning closely with the actual degradation level of the 
device itself. This process achieves the evaluation and warning of the actual state and degradation level of MOV through 
monitoring and analysis of the sampled data. 

4 Conclusion 

This experiment mainly tests the performance of the algorithm in the analysis and processing of actual MOV degradation 
states, as well as its advantages compared to other similar algorithms. For this purpose, random forest regression (RF), 
traditional support vector regression (SVR), gradient boosting decision tree (GBDT), and grid search support vector regression 
(GS-SVR) are specifically chosen as control groups. The evaluation metrics include mean squared error (MSE), mean absolute 
error (MAE), and coefficient of determination (R²) for each model. The formulas for calculating these three metrics are as 
follows: 

𝑀𝑆𝐸(𝑦, 𝑦
^
) =

1

𝑚
∑(𝑦𝑖 − 𝑦

^

𝑖)
2

𝑚

𝑖=1

(8) 
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𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦
^

𝑖)
2/𝑚

𝑚

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)
2/𝑚

𝑚

𝑖=1

(10) 

Mean Squared Error (MSE) is a common metric used to measure the difference between the predicted values and the true 
values in regression models. It computes the squared differences between the predicted and true values and takes the average 
over all samples. Mean Absolute Error (MAE) is another common metric used to measure the difference between the predicted 
values and the true values in regression models. It computes the absolute differences between the predicted and true values and 
takes the average over all samples. Both of these metrics are used to assess the prediction accuracy of regression models, 
where smaller values indicate smaller differences between the predicted and true values and better predictive capabilities of the 
model. The coefficient of determination (R²) ranges from 0 to 1 and represents the model's explanatory power for the target 
variable. A higher R² value indicates a better ability of the model to explain the target variable, indicating a better fit. When the 
R² value is equal to 1, it means the model perfectly captures the variations in the target variable, indicating that the model can 
explain all the variability in the target variable. 

For the total training set of data in Group A, the calculated MSE is 0.00056, MAE is 0.01909, and R² is 0.98802. The 
prediction results for other algorithms are shown in Table 1. 

Table 1 Testing Metrics Results for Four Algorithms in Group A 

Algorithm MSE MAE R² 

GS-SVR 0.00056788 0.01908692 0.98802007 

SVR 0.00107279 0.02630365 0.97736878 

RF 0.00092899 0.01866634 0.98040241 

GB 0.00071055 0.02039731 0.98501037 

 

For a visual comparison, Fig(8-10) shows the numerical values of the testing metrics results for the four algorithms. The data 
has been scaled to facilitate their display on the same scale. 

 

Fig. (7): Performance Evaluation Metrics Comparison of Four Algorithms in Group A 

 

Fig. (8): Performance Evaluation Metrics Comparison of Four Algorithms in Group B 
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Fig. (9): Performance Evaluation Metrics Comparison of Four Algorithms in Group C 

 

Fig. (10): Performance Evaluation Metrics Comparison of Four Algorithms in Group D 

 

In datasets A, B, C, and D, the GS-SVR model performed the best, with the lowest mean squared error (MSE) and mean 
absolute error (MAE), as well as the highest coefficient of determination (R²). The SVM model followed closely, with slightly 
higher metrics than the random forest model and gradient boosting decision tree model. Although the GS-SVR model still 
performed the best in datasets B, C, and D, compared to dataset A, its MSE and MAE increased slightly, while the coefficient 
of determination decreased slightly. The SVM model also showed relatively good performance on these datasets, but there is 
still some gap compared to the GS-SVR model. The random forest model and gradient boosting decision tree model performed 
less satisfactorily. 

To provide a more visual explanation of the prediction results, Figure 11 is presented, where each point's x-coordinate 
represents the actual degradation state value in Group A, and the y-coordinate represents the predicted degradation state value 
given by the GS-SVR model. It can be observed that all the scatter points are well-distributed around the red reference line, 
indicating a small error between the predicted and actual values. The model can effectively diagnose and predict the 
degradation state of MOV devices. 

 

Fig (11): Comparison of Predicted and Actual Degradation Values by the GS-SVR Model 
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Additionally, the scatter plots showing the distribution of predicted results versus the true values for groups A, B, C, and D are 
presented in Fig (12-15). 

 

Fig. (12): Scatter Plot of Predicted Results versus True Values for Group A in Various Algorithms 

 

Fig. (13): Scatter Plot of Predicted Results versus True Values for Group B in Various Algorithms 

 

Fig. (14): Scatter Plot of Predicted Results versus True Values for Group C in Various Algorithms 

 

Fig. (15): Scatter Plot of Predicted Results versus True Values for Group D in Various Algorithms 
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5 Discussion 

This study designed experiments to obtain electrical parameter data for MOV devices in different experimental groups, 
subjected to single-pulse and continuous-pulse impacts. The data was then used to characterize the degradation state of the 
MOV devices using principal component analysis (PCA). For the continuous-pulse group, the temperature information from 
the last impact was included as supplementary data. Finally, a numerical prediction model for the degradation state of the 
MOV devices was built using grid search and support vector regression (SVR) algorithm. The feasibility of the model's 
approach for device performance monitoring applications was verified based on the predicted results obtained from the training 
dataset. The model demonstrated the ability to accurately predict the degradation state values of MOV devices after 
experiencing impacts. In terms of extending the analysis to continuous-pulse impacts, the experiment tested MOV devices with 
continuous pulses and recorded their parameter data. The GS-SVR model was used to train a predictive model specifically for 
single-pulse data. The experimental results showed that this method still achieved certain effectiveness in predicting 
continuous-pulse data. Since the degradation assessment values are scaled between 0 and 1, it provides an intuitive basis for 
evaluating the actual degradation level of the devices. The overall approach provides a new feasible solution for online 
monitoring of varistors and their engineering applications in electrical systems. 

However, there are areas for improvement and limitations in the entire research process. Due to limitations in experimental 
time and conditions, the collected experimental data was limited, resulting in a less comprehensive and representative 
distribution of the data samples in the data space. Consequently, the robustness of the constructed model is somewhat lacking. 
Based on this research process, in future practical applications, it is important to collect more diverse data for modeling to 
improve the accuracy of diagnosing the degradation state of MOV devices and enable efficient response to more complex 
pulse impact scenarios in real-world applications. Additionally, although the GS-SVR model performed relatively well on 
different datasets, with low mean squared error, mean absolute error, and high coefficient of determination, this is only a 
preliminary analysis of the data, and more factors and evaluation metrics need to be considered to comprehensively assess the 
performance of the model. Furthermore, many other excellent and suitable algorithms have not been fully explored. Finally, 
further exploration of the physical characteristics of the devices should be strengthened to gain a more scientific understanding 
and discover sensitive features that affect device degradation. By incorporating these features as new sampling parameters and 
following the methodology outlined in the paper, the one-dimensional numerical representation of the device degradation level 
obtained through PCA will also be more reliable and credible. 

LIST OF ABBREVIATIONS 

MOV = Metal Oxide Varistors 

PCA = Principal Component Analysis 

GS = Total Harmonic Distortion Grid Search 

SVR = Support Vector Regression 

MSE = Mean Squared Error 

MAE = Mean Absolute Error 
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