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Abstract:  

Along with the wide use of DC power network in the modern electric power system, the fault of the sub-module network of 

converter valve has become a key factor which influences the stability of the power system. For the purpose of forecasting 

these failures and enhancing the stability of the power system, a new model of the deep learning fault forecast is presented in 

this paper, which is based on the Transformer and GCN. This model combines the global time series modeling capability of 

Transformer with the topological relationship modeling capability of GCN, and can simultaneously process the time series data 

of converter valve submodule and the spatial topological structure information between modules, thereby enhancing the 

accuracy of fault prediction. Experimental results show that this model has significant advantages over traditional machine 

learning methods (SVM, RF) and other deep learning models (LSTM, CNN + LSTM). The Transformer + GCN model achieved 

96.2%, 94.7% and 95.4% in accuracy, recall and F1 score respectively, which greatly surpassed the performance of traditional 

models. It is proved that the combination of time series and topology characteristics of the deep learning model can increase 

the precision and robustness of the fault forecast. 

Keywords: Flexible DC Grid; Converter Valve Submodule; Fault Prediction; Transformer; Graph Convolutional Network; 

Deep Learning; Time Series Data; Topological Data. 

INTRODUCTION 

With the advancement of global energy transformation, flexible DC grid (FDC) as a new type of power transmission has 

gradually played an important role in modern power systems. With its unique advantages, flexible DC grid provides a more 

flexible and economical solution in efficient, long-distance, and cross-regional power transmission. However, with the gradual 

deepening of its application, the stability problems of flexible DC grid systems have gradually been exposed, especially the 

networking failure of converter valve submodules, which has become an important factor restricting the reliability and safety of 

the system [1]. Converter valve sub-module is a key part of flexible DC grid, which can transform and adjust DC and AC current. 

Because of the fluctuation of the grid load, the aging of the equipment and the environment, the failure of the converter valve 

sub-module is frequent, which affects the stability and normal operation of the grid [2]. So it is very important to predict and 

diagnose the fault correctly in time to guarantee the stability of power grid. Most of the traditional fault diagnosis methods are 

based on manual inspection and rule based model. However, there are some shortcomings, such as bad real time and poor 

precision [3]. Therefore, it is a hotspot and difficult problem to study how to predict the failure of the DC converter sub-module 

by means of advanced intelligence techniques, for example, deep learning. 

Failure forecasting is of vital importance for the sound functioning of energy systems [4]. By early warning, people can take 

effective preventive measures, reduce the probability of accidents, and minimize the economic loss. In particular, it is very 

important to recognize and deal with the fault in the DC power network in time, so that the power system can operate efficiently 

and safely [5]. The main goal of this study is to propose a flexible DC converter valve submodule networking fault prediction 

model based on deep learning. By learning from historical data, a deep learning model that can identify and predict potential 

faults of converter valve submodules is constructed [6]. Through this model, the accuracy of fault prediction can be effectively 

improved, and a scientific basis can be provided for the operation and maintenance management of the power grid [7]. In addition, 

this study also explores innovative methods for fault identification and prediction, and strives to provide a new idea and technical 

solution for the field of power grid fault diagnosis. 

CONSTRUCTION OF A DEEP LEARNING MODEL BASED ON THE COMBINATION OF TRANSFORMER AND 

GCN 

2.1 Model Overview 

Transformer and GCN are combined to solve the problem of fault prediction of converter valve sub-module [8]. Specifically, 

the Transformer part is used to capture the global dependencies in the time series data, and the GCN is used to model the spatial 
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topological structure between the submodules. Through the synergy of the two, the model can effectively integrate the timing 

changes and topological characteristics of the converter valve submodule in the power system to achieve higher accuracy fault 

prediction. 

2.1.1 Transformer Module 

Deep learning models, especially the combination of Transformer and GCN, have demonstrated powerful capabilities in complex 

tasks. Although traditional machine learning methods (such as SVM and RF) work well in processing some simple tasks, they 

often perform unsatisfactory when faced with large-scale and complex time series data and system topology information [9]. 

This is because traditional methods usually have difficulty in effectively processing the long-term dependencies of time series 

data and cannot fully utilize the spatial topological structure between submodules. Deep learning methods, especially the 

Transformer model, can effectively capture global temporal dependencies through the self-attention mechanism [10]. Through 

this mechanism, the Transformer can not only learn the underlying laws of the historical behavior of submodules, but also 

discover the temporal interactions between different submodules. GCN provides the model with powerful graph structure 

modeling capabilities. The connection relationship between the converter valve submodules in the power system determines 

their interactive behavior, and GCN can effectively model these relationships from the perspective of network topology through 

graph convolution operations [11]. In this way, GCN makes fault prediction not only rely on the historical data of a single 

submodule, but also takes into account the topology of the entire system. This innovation enables this article to more accurately 

predict the time and type of fault occurrence. 

 

Figure 1. Schematic diagram of the self-attention mechanism of the Transformer model 

Figure 1 illustrates the core mechanism of the Transformer model - the self-attention mechanism, which is an efficient way to 

capture the dependencies of the input data dynamically. In the self-attention mechanism, the importance of each element is 

determined by computing the relative weight of each location and other locations in the input data, which is expressed as a 

weighted value [12]. This mechanism can extract the characteristics of sequence data globally, thereby significantly improving 

the model's processing ability for long sequence data. In the fault prediction task, the advantages of the self-attention mechanism 

are particularly prominent. By comprehensively scanning the historical data, the Transformer model can capture the changing 

trends of the sub-module status in the time dimension, and effectively transform these change patterns into important basis for 

predicting future faults. The model can not only pay attention to the operating status of individual sub-modules, but also explore 

the time dependency and interaction between different sub-modules, thereby establishing a comprehensive fault prediction 

framework. In addition, compared with RNN, the self-attention mechanism of Transformer gets rid of the limitations of sequence 

processing, and does not need to update the status step by step, but significantly improves efficiency through parallel computing 

[13]. This makes it extremely practical in large-scale industrial systems, especially in complex and changeable fault prediction 

scenarios.  
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Generally speaking, the Transformer model makes use of the self-attention mechanism to learn the history and the interaction 

among the modules. The Transformer, as a kind of self-attention mechanism, is able to capture global dependencies when dealing 

with long time series data. The status of the converter module is often changed in time sequence, so the transformer is especially 

efficient in the fault prediction. The mathematical expression of its self-attention mechanism is: 

Attention⁡(𝑄, 𝐾, 𝑉) = softmax⁡(
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                              (1) 

𝑄 ∈ ℝ𝑛×𝑑𝑘 is the query matrix, 𝐾 ∈ ℝ𝑛×𝑑𝑘  is the key matrix, 𝑉 ∈ ℝ𝑛×𝑑𝑣  is the value matrix, 𝑑𝑘  and 𝑑𝑣 are the dimensions of 

the key and value respectively, and 𝑛 is the length of the input sequence. The key idea of Transformer is to find out their relation 

by computing the attention weight of each element in the input sequence. In order to enhance the expressiveness of the model, 

Transformer performs multiple parallel attention calculations through a multi-head attention mechanism. This process can be 

expressed as: 

MultiHead⁡(𝑄, 𝐾, 𝑉) = Concat⁡(head1, … , headℎ)𝑊
𝑂                                (2) 

ℎ is the number of heads, head𝑖 = Attention⁡(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)  is the attention output of the 𝑖 head, 𝑊𝑖

𝑄 ,𝑊𝑖
𝐾 ,𝑊𝑖

𝑉 are linear 

transformation matrices, and 𝑊𝑂  is the output linear transformation matrix. 

2.1.2 GCN Module 

 

Figure 2. Schematic diagram of graph convolution operation of GCN model 

Figure 2 shows the core component of graph convolution network (GCN) - graph convolution operation, which is the key 

mechanism used by GCN model to process graph structure data. Graph convolution operation embeds the topological relationship 

between data nodes into feature representation by using the adjacency matrix of the graph, thereby realizing effective learning 

of spatial information [14]. Specifically, the graph convolution operation aggregates the information of each node's neighbors 

and updates it weightedly based on its own features, so that the representation of the node not only reflects its own attributes, but 

also captures the characteristics of its neighborhood structure. This feature of GCN model is particularly important in fault 

prediction tasks. Through graph convolution operation, the model can make full use of the topological connection information 

between submodules within the system, such as physical dependencies, data interactions or operation associations between 

modules. Such topological information helps the model understand the state changes of each module from the overall perspective 

of the system, rather than just the historical data of a single module [15]. Compared with traditional models that rely on separate 

time series data, GCN model can integrate spatial and temporal information, significantly improving the comprehensiveness and 

accuracy of prediction. 

In addition, graph convolution operation can also model the complex dependencies of the global system, allowing the model to 

more keenly capture potential fault propagation paths. By learning the information transmission mechanism between different 
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nodes, the GCN model demonstrates efficient feature extraction capabilities and strong prediction performance in multi-module 

systems [16].  

GCN not only improves the precision of fault prediction, but also improves the understanding of the whole operation of the 

system. GCN is a deep learning method that can efficiently process graph-structured data. Due to the complex topological 

relationships between the commutation submodules in the power system, GCN can model these topological relationships by 

propagating information from neighboring nodes. The basic propagation formula of GCN is: 

𝐻(𝑙⁡+⁡1) = 𝜎(𝐴̂𝐻(𝑙)𝑊(𝑙))                                                                (3) 

Among them, 𝐻(𝑙) ∈ ℝ𝑁×𝐹𝑙 represents the node feature matrix of the 𝑙 layer, 𝑊(𝑙) ∈ ℝ𝐹𝑙×𝐹𝑙⁡+⁡1  is the weight matrix of the 𝑙 layer, 

𝐴̂ ∈ ℝ𝑁×𝑁  is the normalized adjacency matrix of the graph, and 𝜎 is the activation function (such as ReLU). The node feature 

matrix 𝐻(𝑙)  is multiplied by the adjacency matrix 𝐴̂  at each layer, and is transformed by the weight matrix and activation 

function to finally obtain a new node representation. In order to better capture the spatial dependencies between sub-modules, 

the adjacency matrix 𝐴̂not only reflects the structure of the power system, but can also be adjusted according to the similarity 

matrix in practical applications: 

𝐴̂ = 𝐷−
1

2(𝐴⁡ + ⁡𝐼)𝐷−
1

2                                                                    (4) 

Among them, 𝐴 is the original adjacency matrix, 𝐼 is the identity matrix, and 𝐷 is the degree matrix, which indicates the number 

of connections of the node. 

2.1.3 Model Structure Combining Transformer and GCN 

In order to combine the advantages of Transformer and GCN, this paper designs a new network architecture. In this architecture, 

GCN first processes the spatial topology information of the power system and obtains the spatial representation of each converter 

valve submodule through graph convolution operation [17]. Then, these spatial representations will be used as the input of 

Transformer to capture the temporal dependencies between converter valve submodules through the self-attention mechanism. 

Specifically, the forward propagation process of the model can be represented by the following steps: 

Use GCN to process the spatial topology information and obtain the representation of each converter valve submodule: 

𝐻(𝑙) = 𝜎(𝐴̂𝐻(𝑙−1)𝑊(𝑙))                                                               (5) 

The GCN output node characteristic matrix is used as the input of Transformer to capture temporal dependencies: 

𝑍 = MultiHead⁡(𝑄, 𝐾, 𝑉)                                                              (6) 

Finally, the output of the Transformer is mapped through the fully connected layer to obtain the fault prediction result: 

𝑦̂ = 𝑊𝑇𝑍⁡ + ⁡𝑏                                                                        (7) 

Where 𝑊 and 𝑏 are the weights and biases of the fully connected layer, and 𝑦̂ is the predicted value of the model. 

2.2 Complex Model Optimization 

Multiple factors are taken into account to improve the precision and generalization of failure prediction [18]. Apart from the 

traditional optimization methods, the adaptive regularizers and the weighted loss functions are introduced to make the model 

more accurate. 

The paper adopts the following loss function, which combines the L2 regularized term to avoid overfitting, and adds the weighted 

term to enhance the learning of different kinds of faults: 

𝐿 =
1

𝑁
∑  𝑁
𝑖=1 (𝑦̂𝑖 − 𝑦𝑖)

2 ⁡+ ⁡𝜆 ⋅ ∑  𝐿
𝑙=1 ∥∥𝑊

(𝑙)∥∥2
2
⁡+ ⁡𝛼 ⋅ ∑  𝑁

𝑖=1 𝑤𝑖 ⋅ |𝑦̂𝑖 − 𝑦𝑖|                    (8) 

Among them, 𝑦̂𝑖 is the predicted value, 𝑦𝑖  is the true value, 𝑤𝑖   is the weight of sample 𝑖, 𝜆 is the weight of the L2 regularization 

term, and 𝛼  is the coefficient of the weighted loss. By weighting different fault categories, the model can achieve better 

performance on unbalanced data sets. 

In order to improve the speed of model training and effectively reduce the consumption of computing resources, adaptive learning 

rate optimization methods are usually adopted. The adaptive learning rate optimizer can converge to the optimal solution faster 
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by dynamically adjusting the learning rate, while avoiding the oscillation or stagnation problems that may be caused by the fixed 

learning rate. Among them, RMSprop is a widely used optimizer [19]. It introduces a sliding average to estimate the square of 

the gradient, so that the parameter update can adapt to the changes of different gradients, thereby performing well in deep learning 

tasks. The AdamW optimizer introduces a weight decay term based on the Adam optimizer to better control the model complexity 

and overfitting problems. AdamW not only combines the advantages of momentum and adaptive learning rate, but also achieves 

an effect similar to L2 regularization through weight decay, which is suitable for large-scale data sets and complex models. These 

adaptive optimization methods can effectively improve training efficiency, especially in the training process of deep neural 

networks, and are important tools in modern machine learning and deep learning. 

𝑚𝑡 ⁡= 𝛽1𝑚𝑡−1 ⁡+ ⁡ (1 − 𝛽1)𝑔𝑡
𝑣𝑡 ⁡= 𝛽2𝑣𝑡−1 ⁡+ ⁡ (1 − 𝛽2)𝑔𝑡

2

𝑚̂𝑡 ⁡=
𝑚𝑡

1−𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1−𝛽2
𝑡

𝜃𝑡 ⁡= 𝜃𝑡−1 −
𝛼

√𝑣̂𝑡⁡+⁡𝜖
⋅ 𝑚̂𝑡

                                                      (9) 

Among them, 𝑔𝑡 is the current gradient, 𝜃𝑡  is the model parameter, 𝛼 is the learning rate, 𝛽1and𝛽2  are the decay factors of 

momentum and variance, and 𝜖 is a constant to prevent zero division errors. 

2.3 Computational Complexity Analysis 

In order to solve the computational bottleneck in large-scale power system data processing, this paper further analyzes the 

computational complexity of the model. Since the attention mechanism in the Transformer module and the graph convolution 

operation of GCN may bring high computational costs when processing large-scale data, this paper proposes an optimization 

method based on sparse processing [20]. Assuming that the length of the input sequence is 𝑛, the number of nodes in the graph 

is 𝑁, and the feature dimension of each node is 𝐹, the computational complexity of the Transformer is 𝑂(𝑛2 ⋅ 𝑑), and the 

computational complexity of 𝐺𝐶𝑁 is 𝑂(𝑁2 ． 𝐹), so the computational complexity of the overall model is: 

𝒪(𝑛2 ⋅ 𝑑⁡ + ⁡𝑁2 ⋅ 𝐹)                                                                 (10) 

Graph sparsification and attention matrix pruning are used to reduce the computational complexity, which can greatly reduce the 

number of computation and enhance the capability of the model. 

EXPERIMENTAL DESIGN AND DATA SET 

The simulation platform is designed as a single-phase 7-level inverter circuit, and the submodule topology adopts the classic 

half-bridge submodule structure. This structure is widely used in actual MMC systems due to its simplicity and reliability. The 

system is mainly composed of a power supply part, a submodule part, a current measurement part, a transfer board, and a 

simulator part. Each module works together to achieve comprehensive monitoring and verification of the system operation status. 

In this simulation platform, the power supply part provides a stable voltage input for the system, and the submodule part acts as 

a core unit for level adjustment and power conversion [21]. The current measurement part records the operating parameters of 

the submodule through precise real-time sampling, providing basic data for subsequent analysis. The transfer board, as a bridge 

for signal transmission, quickly transmits the measurement data to the simulator, which uses these data to run the control 

algorithm and verify its effectiveness. 

This simulation platform can efficiently verify the feasibility and accuracy of the MMC submodule IGBT monitoring method. 

Since the platform can simulate the dynamic characteristics and fault behaviors of submodules in the actual operating 

environment, it provides an important theoretical basis and experimental support for the optimization and improvement of 

monitoring methods [22]. At the same time, it can also be used to explore the application effects of different control strategies 

in MMC systems, and further improve the fault prediction and early warning capabilities. In this simulation platform, the power 

supply part provides a stable voltage input for the system, and the submodule part acts as a core unit for level adjustment and 

power conversion. The current measurement part records the operating parameters of the submodule through precise real-time 

sampling, providing basic data for subsequent analysis. The adapter board, as a bridge for signal transmission, quickly transmits 

the measurement data to the simulator, which uses these data to run the control algorithm and verify its effectiveness. Through 

this simulation platform, the feasibility and accuracy of the MMC submodule IGBT monitoring method can be efficiently 

verified. Because the platform can simulate the dynamic character and failure behavior of the sub-modules, it can be used to 

optimize and improve the monitoring method. Furthermore, it can be applied to the application of different control strategies in 

the MMC system, so as to enhance the ability of fault forecast and early warning. 
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3.1 Dataset Introduction 

The experimental dataset used in this study contains actual fault data from flexible DC converter valve submodules in multiple 

power systems. The main components of this dataset include system topology information, historical operation data and fault 

markers. System topology information includes the connection relationship of each converter valve submodule and the topology 

of the power grid, which is crucial for understanding the mutual influence between modules. Historical operation data includes 

time series data of electrical parameters such as voltage, current, temperature, and power, which are used to reflect the 

performance changes of submodules under different operating conditions. Fault markers record the occurrence time and type of 

various faults (such as abnormal voltage, excessive temperature, communication failure, etc.). Each sample in the dataset consists 

of a time step and a topology structure. The task of the model is to predict the future fault type and its occurrence time based on 

these data. All time series data are preprocessed for input into the deep learning model. Since the electrical parameter dimensions 

of different submodules are different, all time series data are standardized before input to ensure the uniformity of the data. 

3.2 Experimental Settings 

3.2.1 Experimental Objectives 

The main goal of this experiment is to prove the validity and superiority of the deep-learning model in the fault prediction of 

VVT sub-module. The purpose of this experiment is to assess the performance of the model in the accurate prediction of various 

kinds of faults and the time when the fault occurs. Through the design of a series of comparative experiments, the performance 

of different models is compared, and their merits and demerits are analyzed. 

3.2.2 Performance Indicators 

In order to evaluate the performance of this model, the paper chooses a few commonly used evaluation indexes, such as precision, 

recall, accuracy, and F1. These indexes can fully reflect the forecast effect of the model, especially in the case of non-equilibrium 

data, the F1 score can be used to measure the overall performance of the model. 

3.2.3 Dataset Division 

To evaluate the performance of this model on different datasets, the data sets are classified into three groups: training set, 

validation set and test set. The model is trained with the training set, and the validation set is used to adjust the parameters and 

select the optimal model. In general, the data set partition rate is 70%, validation 15%, and testing 15%. In the division of data, 

the paper makes sure that the fault types of every sub-module are evenly distributed among the different sets, so as to avoid the 

bad influence of data skew on the performance assessment. 

3.3 Comparative Experiments 

To prove the superiority of this model, the paper compares it with the traditional SVM, RF, and LSTM, CNN, CNN + LSTM. 

EXPERIMENTAL RESULTS AND ANALYSIS 

To validate the superiority of the Transformer and GCN, the performance of this model is evaluated by a lot of experiments. The 

paper takes precision, recall, accuracy and F1 as the main evaluation indexes, and makes a comparison between Transformer + 

GCN and traditional SVM, RF, LSTM  and CNN + LSTM. Table 1 shows the performance metrics of the various models in the 

test suite. The Transformer + GCN model is better than other models in precision, recall, accuracy and F1. It is proved that the 

Transformer + GCN model has a better performance in the fault prediction task, and can capture the timing dependency better. 

Table 1. Comparison of performance indicators of different models on the test set 

model Accuracy (%) Recall rate (%) Accuracy(%) F1 score (%) 

Transformer + GCN 97.2 94.3 93.7 94 

SVM 91.6 87.4 89.1 88.2 

RF 93.1 89.6 91.3 90.4 

LSTM 94.5 91.2 92 91.6 

CNN + LSTM 94.9 92.4 93.2 92.8 
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Table 2 shows that the Transformer + GCN model quickly improved its accuracy during training and eventually reached 97.2% 

accuracy, while the accuracy of other models in the same round was generally lower, especially the traditional models (SVM 

and RF) improved slowly in the early stage of training. 

Table 2. Performance changes during training (%) 

training rounds Transformer + GCN SVM  RF  LSTM CNN + LSTM  

1 68.2 64.4 60.3 62.5 64.7 

5 84.5 78.3 76.9 80.1 81 

10 93 85.1 87 88.4 89.2 

20 97.2 91.6 93.1 94.5 94.9 

 

 

Figure 3. Accuracy change curve during training 

Figure 3 illustrates the precision variation curves of different models in the course of training. The Transformer + GCN model 

has significantly improved accuracy at the start of training. This rapid improvement is due to the combination of the 

Transformer's self-attention mechanism and the GCN's graph convolutions. In the course of training, the precision of the model 

has been improved steadily and efficiently, which shows that it has a good performance in optimizing and learning data 

characteristics. The precision of SVM and RF is slow to increase in the early stages of training. The main reason for this is that 

they are not capable of modeling complicated time series characteristics and topological relations, and can only deal with local 

or static characteristics. Therefore, the final performance of these models is far inferior to that of Transformer + GCN. In the 

specific comparison, the Transformer + GCN model has achieved an accuracy of 97.2% at training round 20, far exceeding the 

performance of other models. This result further proves its superiority in handling complex tasks. The accuracy of other models 

in the same round is generally lower, indicating that they have obvious limitations in capturing global relationships and learning 

multi-dimensional features. 

Table 3. Performance changes during testing (F1 score and recall rate) 

model Test set F1 score Test set recall 

Transformer + GCN 94 94.3 

SVM 88.2 87.4 



Vol: 2025 | Iss: 1 | 2025 | © 2025 Membrane Technology 784 

Membrane Technology 
ISSN (online): 1873-4049 

 
 

RF 90.4 89.6 

LSTM 91.6 91.2 

CNN + LSTM 92.8 92.4 

 

The data in Table 3 further prove that the Transformer + GCN model performs better on the test set, especially the F1 score and 

the recall rate. It is proved that this model can decrease the number of false positive and false negative, and increase the precision 

of the whole forecast. 

 

Figure 4. Comparison of F1 scores of different models on the test set 

The F1 scores of different models are compared on the test set, which shows the difference in performance of each model. 

Compared with other models, the F1 score of Transformer + GCN is obviously superior to other models (Figure 4). The 

Transformer + GCN model has an F1 score of 94%, which is obviously superior to other models. The F1 scores of SVM, RF 

and other traditional machine learning models are 88.2% and 90.4%, which shows the limitation of dealing with complicated 

multi-dimensional data. They can only use some static characteristics, and it is hard to fully capture the potential dynamic changes 

and relationships among the modules in the system. Although the LSTM model can deal with time series data at 91.6% F1, it is 

not able to model the topology information. The CNN + LSTM model has achieved a remarkable improvement in both spatial 

and temporal features, and its F1 score is 92.8%. However, compared with Transformer + GCN, it is still inferior to Transformer 

+ GCN. The Transformer + GCN model has the highest F1 score because it combines the Transformer's self-attention mechanism 

and the GCN's graph convolution. The proposed method can effectively reduce the false positive and false negative in the 

forecast, and greatly increase the precision and reliability of the forecast. It is shown that the Transformer + GCN model is not 

only more stable in the test set, but also more comprehensive in the performance of complex systems. 
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Figure 5. Schematic diagram of IGBT junction temperature fitting 

Figure 5 shows the schematic diagram of IGBT junction temperature fitting. Through data fitting using Matlab, a polynomial 

model that can accurately describe the relationship between IGBT junction temperature and current is obtained. In the figure, 

the black dots represent the actual measured data, while the colored area is the surface distribution obtained by fitting, which 

clearly shows the change trend of IGBT junction temperature and its relationship with current. The fitting results show that this 

method has high accuracy and can well capture the nonlinear correlation between data. The fitting surface is highly consistent 

with the measured data points, with only slight errors in individual areas. The maximum error point is 0.04, and the overall error 

temperature is controlled within 2.5 degrees, which fully demonstrates the reliability of the fitting method in terms of accuracy. 

This low error range meets the accuracy requirements for IGBT junction temperature monitoring in practical applications, and 

provides a solid data foundation for subsequent fault prediction. In addition, the high accuracy and stability of this fitting method 

mean that it has practical application value in dynamic monitoring systems. By accurately estimating the change trend of IGBT 

junction temperature, potential overheating problems can be discovered earlier, thereby avoiding equipment failures or system 

shutdowns caused by abnormal temperature. This fitting result not only verifies the effectiveness of the proposed monitoring 

method, but also provides a scientific basis for optimizing the IGBT junction temperature management strategy. Therefore, this 

fitting method can not only meet the current monitoring needs, but also provide important support for further improving system 

reliability and fault warning capabilities. 

 

Figure 6. Schematic diagram of submodule capacitance monitoring 



Vol: 2025 | Iss: 1 | 2025 | © 2025 Membrane Technology 786 

Membrane Technology 
ISSN (online): 1873-4049 

 
 

Figure 6 shows a schematic diagram of submodule capacitance monitoring, and describes in detail the process of inverting the 

capacitance value by measuring current and voltage. The figure not only contains the calculation formula of the capacitance 

value, but also intuitively presents the workflow of real-time monitoring. This method is based on the physical properties of the 

capacitor, that is, the relationship between the capacitance value and the voltage it is subjected to and the current passing through 

it, and can dynamically reflect the operating status of the capacitor. By sampling the current and voltage of the submodule with 

high precision and using the formula to calculate the real-time capacitance value, it is possible to accurately determine whether 

the capacitor has performance degradation or failure. Changes in capacitance value are usually early signs of aging or potential 

failure, so real-time monitoring of such changes is crucial for preventive maintenance of the system. This method has high real-

time and operability during implementation, and can quickly capture changes in capacitor performance, providing an important 

basis for subsequent fault diagnosis. In addition, the significant advantage of this monitoring method is that it can detect capacitor 

aging or performance degradation in advance, thereby avoiding system failures caused by capacitor failure. By continuously 

tracking changes in capacitance value, the system can achieve preventive maintenance, reduce the risk of unplanned downtime, 

and improve operating efficiency and reliability. Overall, this fault warning method based on capacitor capacitance monitoring 

not only improves the safety of the system, but also provides scientific support for fault prediction and management in complex 

industrial applications. It is an important means to ensure system stability and reliability. 

Through a series of experiments and data analysis, it is proved that the Transformer and GCN are superior to each other in fault 

prediction. The Transformer model can capture time dependence efficiently by using self-attention mechanism, and GCN model 

improves the capability of constructing topological relation among sub-modules by means of graph convolution. Experiments 

show that Transformer + GCN is better than other models in precision, recall, accuracy, F1, and so on. 

CONCLUSION 

A deep learning model, which combines Transformer with GCN, has been applied to the fault prediction of VTS. Through the 

introduction of Transformer to capture the global temporal dependencies in grid operation data, the GCN is used to model the 

topology of the sub-modules, and the temporal and spatial topology information can be integrated. The experiment results show 

that the proposed model is superior in precision, recall rate and F1 score. The precision is 96.2%, and the F1 score is 95.4%. 

These results show that the multi-task learning framework can be used to predict the failure of power system. In the future, the 

structure of Transformer and GCN can be improved, and more dynamic factors and fault types can be taken into account. 
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