
Membrane Technology 
ISSN (online): 1873-4049 

Vol: 2025|Iss: 1|2025|© 2025 Membrane Technology   633

Energy Method for Analyzing the Large Deformation of Geogrid Cushions Above 

Cylindrical Soil Cavities 

Xiangru Yang1,2 
1. Fujian Chuanzheng Communications College, Fuzhou, China

2. Fujian Chuanzheng Communications Management Co., Ltd, Fuzhou, China

Abstract: 
In regions prone to soil cavity development, geogrid-reinforced embankments must consider the impact of foundation 
settlement. This study models the geogrid cushion as a thin circular elastic plate, with the embankment's self-weight, 
vehicular traffic loads, and the frictional forces at the reinforcement-soil interface all translated into external loads. Utilizing 
the Pasternak model to simulate the foundation, we adhere to the principle of large deflection in thin plates to account for 
three types of strain energy and the work done by external loads, thereby deriving analytical expressions for the deformation 
of the geogrid cushion. We analysed the impact of embankment height, reinforcement-soil interface parameters, modulus 
of subgrade reaction, and the shear modulus of the foundation soil on the deflection of the reinforced-cushion. The findings 
reveal that when the embankment height surpasses the cavity diameter, its influence on differential settlement in anchorage 
areas becomes negligible. As the tangential resistance coefficient at the reinforcement-soil interface increases, its effect on 
differential settlement in the subsidence area progressively diminishes. The modulus of subgrade reaction influences 
differential settlement in anchorage areas but not in the collapsed area. The taller the embankment, the more significant the 
impact of the modulus of subgrade reaction in the collapsed area. When the embankment height and the thickness of the 
Pasternak shear layer are considerable, and the modulus of subgrade reaction is low, the effect of the foundation shear 
modulus on the deflection of the reinforced-cushion must be considered. 
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INTRODUCTION 

With the swift expansion of infrastructure and the dwindling availability of developable land, an increasing number of 
structures—municipal roads, highways, and railroads—are being constructed in karst regions[1]. To ensure the ongoing 
functionality of these structures despite cavity formation, various foundation treatments, such as piles and geosynthetics, are 
frequently implemented. Among the myriads of reinforcement options, geosynthetics are favoured for their time efficiency, 
cost-effectiveness, environmental sustainability, and user-friendliness [2]. Geosynthetics, which serve to bridge potential 
voids beneath load-bearing granular layers, encompass woven geotextiles, geogrids, and geocomposites [3,4]. 

Current research on geosynthetics spanning cavities primarily examines the interplay between geosynthetics, embankment 
materials, and sinkholes. The influence of foundation deformation on the reinforced cushion is predominantly manifested 
through friction at the reinforcement-soil interface. Giroud et al. (1990) [5] and Wang et al. (1996) [6] developed a method 
for calculating the tensile force of geosynthetics in collapsed areas, presupposing that the reinforcement material remains 
undeformed outside the cavity. Subsequent studies by Briancon & Villard (2008) [7], Villard & Briancon (2008) [8], Le et al. 
(2014) [9], Van & Jacobsz (2016) [10], Villard et al. (2016) [2], Huckert et al. (2016) [11], Lai (2018) [12], and Wang et al. 
(2024) [13] focused on the load-bearing and deformation behaviour of the reinforcement outside the cavity. Employing a 
variety of methods, including theoretical analysis, numerical simulation, and prototype or model testing, these studies 
elucidated the stress-deformation behaviour of geosynthetics in both anchorage and collapsed areas. However, these studies 
did not treat the foundation, sinkholes, and reinforced cushion as an integrated system, nor did they explore the impact of 
foundation settlement in anchorage areas on the deformation of the reinforced embankment. In practice, under the load of 
backfill and traffic or due to groundwater fluctuations, foundations may not only develop voids but also experience settlement. 

Research on foundation-reinforced embankments predominantly centres on pile-supported embankments and those over soft 
foundations [14]. Typically, soil-structure interaction is modelled as a beam-soil interaction system [15-20]. For foundation-
soil analysis, Pasternak introduced a two-parameter foundation model that builds upon the Winkler model by incorporating 
the effects of transverse shear deformation, thereby broadening its applicability [21]. The challenge of geosynthetics in 
continuous foundations is often reduced to a Timoshenko beam model [15- 17] or a Euler-Bernoulli beam model [18-20]. 
These beam-soil system methods, predicated on plane strain, are grossly inaccurate for karst regions. Given that the 
geosynthetic's planar dimensions significantly exceed those of sinkholes, employing the large deflection analysis of circular 
elastic plates to simulate the geogrid structural layer above a cylindrical cavity is more rational. 
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Güler (2004) [22] and Shukla et al. (2011) [23] independently applied the Galerkin and Ritz methods to investigate a thin 
circular elastic plate on a Pasternak foundation under a concentrated central load. These analytical methods, predicated on 
small deformations, are unsuitable for analysing the large-scale deformations of geosynthetics over sinkholes. 

Drawing on the von-Kármán theory, Jones et al. (2010) [24] utilized a three-dimensional thin plate model to simulate 
geosynthetics in a pile-supported embankment on soft soil. For composite foundations, comprising a geogrid cushion over 
gravel piles, Zhao et al. (2016) [25] employed a thin flexible plate capable of large deflections to simulate the geogrid's 
bending resistance. This research suggests that thin flexible plate theory is a viable approach to study geogrid cushion 
deformation. 

However, the strong interaction between the foundation, sinkhole, and geogrid cushion, coupled with their coordinated 
deformation, renders the relationships among these three components highly complex. In our calculations, the foundation, 
sinkhole, and geogrid cushion are treated holistically, with the overburden fill's self-weight, traffic loading, and soil-
reinforcement frictional forces all converted into external loads. Based on the principle of minimum potential energy, under 
the influence of backfill and vehicular traffic, there exists a set of displacements that meet the displacement boundary 
conditions and minimize the total potential energy to zero. 

In this study, the energy method was employed to thoroughly account for three types of strain energy—related to the bending 
of thin plates, mid-plane deformation, and Pasternak foundation deformation—as well as the work associated with the 
embankment's self-weight, vehicular traffic loading, and soil-reinforcement interface friction. We propose a method to address 
the deformation of the reinforced cushion, factoring in foundation deformation in areas where sinkholes develop. 

ENERGY METHOD FOR DEFORMATION CALCULATIONS 

Analytical Model 

For embankments reinforced over cylindrical cavities, the geogrid cushion is modelled as a thin circular elastic plate, with the 
Pasternak model utilized to characterize the foundation soil. The soil-arching effect results in distinct stress conditions within 
the geogrid cushion between the collapsed area and the anchorage zones. 

The analysis is predicated on several key assumptions: 

1. The calculation omits the increased pressure on the geogrid cushion near the sinkhole in the anchorage areas, an outcome 
of the earth pressure redistribution in the collapsed area. Adachi et al. (2003) [26] observed in three-dimensional experiments 
that all four sides can resist the heightened earth pressure due to the descending trapdoor, with the maximum compressive 
stress increment in the anchorage section being 0.1-0.2 times the original pressure. 

2. The loads exerted on the geogrid cushion in both the collapsed area and the anchorage areas are presumed to be uniformly 
distributed. 

3. The variation in strength of the reinforcing material across the horizontal plane is not taken into account. 

4. It is assumed that the mid-plane of the geogrid cushion, which is normal to the cushion, remains straight both pre- and post-
deformation. 

5. The thickness of the geogrid cushion is considered constant throughout the deformation process. 

6. The geogrid cushion, embankments, and the underlying foundation are assumed to be intact and to maintain an elastic state 
before and after deformation. 

7. The geogrid cushion is assumed to exhibit isotropic properties in both longitudinal and transverse directions. 

In the analytical model, the centre of the collapsed area is designated as point O, as depicted in Figure 1. The model is 
asymmetric, with point A marking the edge of the soil cavity and point B defining the influence boundary of the soil cavity 
collapse (a fixed boundary). In Figure 1, a represents the radius of the cavity (m), b represents the radius of influence of the 
cavity (m), w represents deflection (m), q0 represents the load applied on anchorage areas (kPa), n represents the coefficient 
related to soil arching effect (dimensionless). 
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Figure 1. Analytical model 

Energy Equation 

Drawing upon the theory of thin flexible plates that account for large deflections, the curvature strain energy of the reinforced 
cushion is articulated as follows: 

 
2 22 2

2 2

1π 2d w dw dw d wW D d
d dd d

ρ µ ρ
ρ ρ ρρ ρ

     = + +       
∫   (1) 

W - coefficient related to soil arching effect (dimensionless); 

D - flexural rigidity of the reinforced-cushion (kN·m), ( )
3

212 1
ED δ

µ
=

−
; 

ρ - radial distance of the point from the cavity centre (m); 

μ - poisson’s ratio of the reinforced-cushion (dimensionless); 

E - elastic modulus of reinforced-cushion (kN/m2); 

δ - reinforced-cushion thickness (m). 

The strain energy due to the mid-plane deformation of the geogrid cushion is expressed as: 
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∫  (2) 

The load exerted on the Pasternak foundation, denoted as 
2

2

1
s

d w dwq k w GH
dd ρ ρρ

 
= − + 

 
[23], influences the strain energy 

associated with the foundation's deflection, which can be articulated as follows: 

 
2
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  
= = − +     

∫ ∫  (3) 

q - load applied on the foundation (kPa); 

ks - modulus of subgrade reaction of the Pasternak foundation (kN/m3); 

G - shear modulus of the Pasternak foundation (kN/m2); 

H - thickness of the Pasternak shear layer (m); 

K - strain energy associated with the foundation deflection (kJ). 
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The external work encompasses both the contributions from vertical loads, such as the self-weight of the embankment and 
traffic loading, as well as horizontal loads, namely the frictional forces at the reinforcement-soil interface. This external work 
can be mathematically expressed as: 

 ( )22π hQ qw k u dρ ρ= −∫  (4) 

Q - work done by load q (kJ); 

kh - tangential resistance coefficient of reinforced cushion interface (kN/m3), max

min
hk

u
τ

= ; 

τmax - maximum frictional resistance of the reinforcement-soil interface (kPa); 

umin - minimal displacement for maximal friction mobilization (m). 

Displacement Boundary Conditions 

For =bρ , ( ) 0

s

q
w b

k
= , | 0b

dw
d ρρ = = , 

2

2 | 0b
d w
d ρρ = = , ( ) 0u b = , ( )

2

=
1= =0
2 b

du dwb
d dρ ρε
ρ ρ

  
 +     

. 

Where ( )0 =q h hγ ′+ . γ represents the unit weight of the soil (kN/m3), h represents the embankment height (m); h’ represents 
the height of the equivalent soil column that corresponds to the excess load on the ground surface. 

For =0ρ , ( )0 0u = , 0| 0dw
d ρρ = = . 

According to Huckert et al. (2016) [11], Villard et al. (2016) [2], Lai (2018) [12], b = 4a, radial strain of reinforcement is 
close to 0. So the analysis range is 4 times of the radius of the sinkhole. Because point B is fixed with multiple boundary 
conditions, the analysis starts from the AB segment. 

Displacement Function Definition 

Scholars, through moving trapdoor experiments and numerical analysis, have identified various types of deflection curves for 
geosynthetics in the collapsed area. These include the catenary curve as described by Blight & Barrett (1990) [27], the 
hyperbolic curve reported by Le et al. (2014) [9], and the parabolic curve documented by Espinoza & Bray (1995) [28]and 
He et al. (2016) [29]. 

Utilizing the Ritz method, the deformations within the AB segment are specified as follows: 

 [ ]
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The deformations of the OA segment are expressed as: 
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The coefficients A1, A2, A3, A4, C1, and C2 are mutually independent.  

Considering nondimensional parameters as: * 4bb
a

= = , *

a
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Eqs.(5)–(8) are transformed into: 
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Displacement Equation Solution 

Within the AB segment, the energy equations are formulated as follows: 
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In the OA segment, the energy equations are articulated as: 
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The coefficient n is associated with the soil arching effect. Drawing from Terzaghi's theory on the soil-arching effect as 

elaborated [5], 
0
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In there, σv - vertical stress in collapsed area (kPa); 

K0 - coefficient of earth pressure at rest (dimensionless); 

c - fill material cohesion, geosynthetic and overlying fill cohesion; 

φ - internal friction angle of fill material. 
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In the analysis, the geogrid cushion, the underlying cavity, and the foundation are considered as a single integrated system. 
The total potential deformation energy encompasses both the potential energy of the entire system and the potential energy 
exerted by external forces. 

 ( ) ( )* * * * * * * * *
1 1 1 1 2 2 2 2W U K Q W U K QΠ = + + − + + + −  (21) 

* * * * *
0
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Π-total potential energy(kJ), Π* is dimensionless. 

Employing the principle of minimum potential energy, the coefficients A1
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*
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through Eqs. (22) and (23). 
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SOLUTION VERIFICATION 

In their study on cylindrical cavities, Huckert et al. (2016) [11] investigated the load transfer mechanisms in geotextile-
reinforced embankments. They employed horizontal double-layered coaxial inflatable tubes placed within a foundation cavity 
to simulate the progressive expansion of the cavity under natural conditions by releasing gas. Concurrently, they measured 
the deformations of the geotextile during the cavity formation process. Building upon Huckert's test conditions, Villard et al. 
(2016) [2] utilized a discrete-element model to simulate geotextile deformation under two scenarios: gradual cavity formation 
(proc A) and rapid cavity formation (proc B). Lai (2018) [12] examined the load transfer mechanism of low-filled reinforced 
road subgrade against cavity collapse, based on partial soil-arching, and derived the geotextile deformation through theoretical 
calculations. However, in the aforementioned analyses, including experiments and both numerical and theoretical calculations, 
foundation deformation was not taken into account. For ease of comparison, the deformation of the foundation outside the 
void was neglected, implying that w1=0. The strain energy related to foundation deflection K=0. The properties of geotextiles 
differ significantly from those of elastic thin plates but are more analogous to thin films. Given this, the flexural rigidity of 
the geotextile is considered negligible, resulting in the absence of curvature strain energy within the reinforced-cushion. So, 

( ) ( )1 1 2 2U Q U QΠ = − + − . 

The experimental and computational parameters are presented in Table 1. 

Table 1. Prototype test and calculation parameters 
Material Properties 

Embankment fill 3=15.6kN/mγ , ϕ =36°, =0c , =1mh , 0h′ = , =0.771n  

Geotextile =23uϕ

, =40lϕ


, 0u lc c= = , 0.35µ = , =0.003mδ , 3=1300kN/mhk , J=2988 kN/m, 

E=400MPa* 

Cavity a=1.1m, b =4.4m 

*φu - internal friction angle between the geosynthetic and the overlying fill (°);  

φl - internal friction angle between the geosynthetic and the underlying fill (°);  

cu - geosynthetic and overlying fill cohesion (kPa); 

cl - geosynthetic and underlying fill cohesion (kPa); 

J - tensile stiffness per unit width of the geosynthetic fabric (kN/m). 

Verification of Reinforced-Cushion Deflection 

Based on the preceding analysis, the equations that describe the settlement curve of the reinforced-cushion are detailed below: 
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In comparison with the prototype test conducted by Huckert et al. (2016) [11], the discrete-element simulations of Villard et 
al. (2016) [2] for processes A and B, and the theoretical results of Lai (2018) [12] based on the partial soil-arching effect, the 
calculated results presented in this paper closely align with the prototype test outcomes of Huckert et al. (2016) [11], the 
simulation results of Villard et al. (2016) [2] for process A (as depicted in Figure 2), and the theoretical findings of Lai (2018) 
[12]. However, the settlement at the cavity centre due to the abrupt formation of the cavity was found to be less than the 
calculated results derived in this study. 

 

Figure 2. Comparison of the settlement results 

Verification of Reinforced-Cushion Strain 

Under conditions of large deformation, the radial strain of the thin circular plate is given by: 
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 (3) 

ερ - radial strain (dimensionless). 

The equations governing the radial displacement curve of the reinforced-cushion are presented as follows: 
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The radial strain of the geosynthetic in both the anchorage and collapsed areas can be formulated as: 
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Figure 3 illustrates the calculated strain results for the reinforced-cushion. When compared with the prototype test results from 
Huckert et al. (2016) [11], the numerical simulations for processes A and B by Villard et al. (2016) [2], and the calculation 
results by Lai (2018) [12] and Briancon et al. (2008) [8], the strain calculations from this study align well with the prototype 
test conducted by Huckert et al. (2016) [11]. The calculated values presented in this paper exceed those of the prototype test 

-0.05

0

0.05

0.1

0.15

0.2

0.25
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Se
ttl

em
en

t  
(m

)

The distance to the cavity center (m)

Villard et al.(2016) Proc B

Lai(2018)

The calculated results

Villard et al.(2016) Proc A

Huckert et al.(2016) test

Collapsed area 

Anchorage area Anchorage area 



Membrane Technology 
ISSN (online): 1873-4049 

Vol: 2025|Iss: 1|2025|© 2025 Membrane Technology 

 
 

 

 
 

    640 

and numerical calculations but are in close proximity to the findings of Briancon et al. (2008) [8]. The trend of radial strain 
variation in the reinforced-cushion, both in the anchorage area and the collapsed area, is fundamentally consistent with the 
outcomes obtained by the aforementioned methods. The radial strain of the reinforced-cushion is maximized at the cavity 
boundary, while the strain at the cavity's centre is significantly lower than that at its edge. 

 

Figure 3. Comparison of the reinforcement strain results 

INFLUENCE FACTORS ON THE DEFLECTION OF REINFORCED-CUSHION 

The formation of cavities can result in uneven surface settlement, posing a threat to traffic safety. Consequently, it is essential 
to analyse the factors that influence the deflection of the reinforced-cushion, including the height of the embankment, 
parameters at the reinforcement-soil interface, the modulus of subgrade reaction, and the shear modulus of the foundation soil. 
The subsequent analysis employs dimensionless parameters to facilitate this examination. 

Effect of Embankment Height 

The height of the embankment directly influences the magnitude of the load exerted on the reinforced-cushion. According to 
Coulomb's law, the embankment height plays a pivotal role in determining the frictional resistance at the reinforcement-soil 
interface. In the calculations, it is assumed that the embankment fill parameters γ =19kN/m3, φ =36°, c=0; the reinforcement-
soil interface parameters φu =φl =25°, cu =cl =0, kh

*=2000; the thickness of reinforced-cushion δ*=0.003; the foundation 
parameters ks

*=500, and (GH)*=500. Calculate the deformations for the values of h*=1,2,3,4. 

In the field of road engineering, differential settlement is typically a greater concern than absolute settlement. Figure 4 
illustrates the differential settlements at various distances from the cavity centre in relation to point B. Additionally, Figure 5 
depicts the settlements at point B for different embankment heights. Taking into account the foundation settlement, the 
differential settlement progressively increases from the stable area towards the cavity's edges within the AB segment, a 
phenomenon not captured in previous studies. Therefore, it is essential to incorporate the settlement of the underlying 
foundation into the deformation analysis when examining the cavity development area. 
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Figure 4. Effect of the embankment height on the reinforced-cushion settlement 

 
Figure 5. Effect of the embankment height on the differential settlement of the geogrid cushion 

The differential settlement of the reinforced-cushion relative to point B escalates with the increment of h*. However, as h* 

increases, the growth rate of this differential settlement progressively diminishes because n decreases due to the soil arching 
effect. 

Figure 5 depicts the settlement and differential settlement at three critical points: point O (the cavity centre), point A (the cavity 
boundary), and point B (the effect boundary). The maximum differential settlement was observed in the collapsed area, 
specifically within the OA segment. The analysis revealed that as h* increases, both the settlement and differential settlement 
also increase. However, the rate at which the differential settlement grows diminishes over time. Notably, when the 
embankment height surpasses the cavity diameter, the impact of h* on the differential settlement in the anchorage areas (AB 
segment) becomes minimal. 

Effect of Reinforcement-Soil Interface Friction 

This paper employs the tangential resistance coefficient at the reinforced cushion interface to analyse the impact of 
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reinforcement-soil interface friction, an approach suitable for scenarios where failure within the geosynthetic and the fill has 
not yet occurred. Figure 6 illustrates the differential settlement associated with varying tangential resistance coefficients at 
the reinforced cushion interface. The findings indicate that this coefficient predominantly influences the differential settlement 
relative to position A within the cavity, yet it does not affect the settlement value at point B or the differential settlement from 
the stable zone (location B) to the cavity's edge (location A). When the tangential resistance coefficient is zero, implying a 
smooth geosynthetic surface and neglecting the interface friction between the reinforcement and soil, the differential 
settlement in the collapsed area is at its maximum. However, as the tangential resistance coefficient increases, the influence 
of the interface strength between the reinforcement and soil on the differential settlement in the subsidence area diminishes 
gradually. Consequently, relying solely on increasing the friction at the reinforcement-soil interface to reduce settlement in 
the collapsed area is not a recommended strategy. 

 

Figure 6. Effect of tangential resistance coefficient on differential settlement 

Effect of the Modulus of Subgrade Reaction of the Pasternak Foundation 

Given that the embankment fill parameters γ =19kN/m3, and c=0, the embankment height h* = 1, 4, kh
*=2000, δ*=0.1, and the 

foundation (GH)*=500, the deformations of the reinforced-cushion corresponding to ks
*=500, 1000, 1500, 2000,were 

calculated (Figure 7 and 8). An increase in ks
* can mitigate the differential settlement relative to point B. However, when ks

*≥ 
1500, further increments have a minimal impact on the differential settlement. Within the collapsed area, specifically the OA 
segment, an increase in ks

* does not affect the differential settlement. Conversely, in the anchorage areas, denoted as the AB 
segment, an increase in ks

* leads to a reduction in differential settlement. Therefore, the modulus of subgrade reaction of the 
Pasternak foundation predominantly influences the differential settlement outside the sinkhole, with no significant effect on 
the differential settlement within the cavity itself. As the embankment height increases, the influence of ks

* on settlement 
becomes more pronounced. 
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Figure 7. Effect of the modulus of subgrade reaction on the differential settlement of the geogrid cushion (h* = 1) 

 

Figure 8. Effect of the modulus of subgrade reaction on the differential settlement of the geogrid cushion (h* = 4) 

Effect of Shear Modulus of the Pasternak Foundation 

Regarding the modulus G, Tanahashi (2004) [30] suggested that when the Poisson's ratio of the soil is 0.35, a specific condition 

5.4sk
G H=  is met. Consequently, G can be ascertained based on ks and H. 

Figure 9 illustrates the differential settlement for various values of (GH)*, with h* = 4 and 6, ks
* =300 and 500, respectively. 

The variation in (GH)* exerts no influence on the differential settlement within the collapse area (OA segment), but it primarily 
affects the differential settlement outside the cavity. As the (GH)* value increases, the differential settlement also increases, 
although the rate of this increase diminishes over time. 

When the embankment height is relatively low (h*=4), the load exerted on the reinforced cushion is minimal, resulting in a 
negligible effect of (GH)* on the deformation of the reinforced cushion; hence, (GH)* can be disregarded in the analysis. 
Conversely, when the embankment height is substantial (h*=6), (GH)* significantly influences the differential settlement of 
the reinforced cushion, necessitating its inclusion in the analysis. Consequently, employing the Winkler foundation model to 
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analyse the deformation of geosynthetics in areas with high fill and cavity development can yield hazardous outcomes. 

When the value of (GH)* is low, variations in filling heights exert minimal influence on the differential settlement within the 
anchorage zone (AB range). However, as the value of (GH)* increases beyond 1000, the impact on differential settlement 
becomes more pronounced. Additionally, despite differences in (GH)* at equivalent filling heights, the differential settlement 
in the collapse area (OA range) remains constant. 

when *
sk  is small ( *

sk  = 300), (GH)* exerts a relatively large influence on the differential settlement within the anchorage 

areas (AB segment), but has little effect in the collapsed area (OA segment). When *
sk  is held constant and H* increases, 

both G* and G*H* rise accordingly. With an increase in the shear modulus, the differential settlement in the anchorage areas 
(AB segment) also increases gradually. 

 

Figure 9. Effect of shear modulus on the differential settlement of the geogrid cushion 

CONCLUSIONS 

(1) This study posits that the foundation, cavity, and reinforced-cushion constitute a single entity, converting the self-weight 
of the embankment and geogrid-soil interfacial friction into an external load. Employing the principle of minimum potential 
energy, the analysis integrates three types of strain energy and external work, yielding a proposed analytical expression for 
geogrid cushion deformation. This method accounts for the foundation deformation conditions within the cavity development 
area. 

(2) The settlement and differential settlement both escalate with increasing embankment height, yet the impact diminishes 
progressively. Once the embankment height surpasses the cavity diameter, the differential settlement in the anchorage areas 
is minimally affected by further height increases. 

(3) When considering the interfacial friction of the reinforced cushion with a tangential resistance coefficient, an increment 
in this coefficient progressively attenuates its influence on the differential settlement within the subsidence area. 

(4) In the anchorage areas, an increase in the modulus of subgrade reaction can mitigate the differential settlement relative to 
the stable area. Conversely, in the collapsed area, it exerts no influence on the differential settlement relative to the cavity's 
edges. With the increase in embankment height, the influence of the modulus of subgrade reaction on the settlement became 
more pronounced. 

(5) In scenarios where the embankment height is substantial, the modulus of subgrade reaction is low, and the thickness of the 
shear layer is considerable, the shear modulus's impact on reinforced-cushion deformation must not be overlooked. 
Incorporating the shear modulus results in higher deflection values. However, the shear modulus exerts no influence on the 
differential settlement relative to the cavity's edges in the collapsed area. 
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