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Abstract:  

New productive forces, driven by innovation and characterized by high-tech features, are essential for promoting high-quality 

economic development. These forces emphasize technological innovation as their core and industrial upgrading as their 

direction. Based on this premise, this paper combines the upgrading of high-tech industry with scientific and technological 

innovation, analyzing the innovation efficiency and the spatial effect. The results reveal significant regional disparities in the 

innovation efficiency across 30 regions in china, with notable differences between the Beijing-Tianjin-Hebei economic region, 

coastal areas, and other regions. Analysis indicates that the panel Spatial Lag Model provides the best fit. Government support, 

economic development, and urbanization exert positive spatial effects on innovation efficiency, while technological talent, 

international openness, and education exhibit negative spatial effects. 

Keywords: new productive forces, high-tech industries, innovation efficiency, spatial differences, spatial econometric 

models. 

INTRODUCTION 

Under the trend of rapid economic development and rapid scientific and technological progress, high-tech industries hold a 

significant position in promoting economic growth. A report stressed that china must focus our economic development on the 

real economy. The emergence of new quality productivity takes scientific and technological innovation as the core and industrial 

upgrading as the direction, indicating the urgency of combining industrial upgrading and scientific and technological innovation. 

High-tech industries integrate the development of science and technology, talents, innovation and real economy. Under the 

general trend of high-quality economic development, we must pay attention to the dual development of science and technology 

and economy of high-tech industry. 

Scholars' research on innovation efficiency mainly revolves around the application of SFA[1] and DEA methods. In 1977, Aiger 

et al.[2] proposed the SFA model, and in 1978, Charens et al.[3] introduced the DEA model. Since then, many scholars have 

begun to use SFA and DEA methods to conduct research. In terms of high-tech industry, few scholars have studied its innovation 

efficiency. Rouven E. haschka and others have conducted relevant research in Europe with the help of Bayesian stochastic 

frontier method and found that the growing pressure of innovation may cause vicious innovation competition. 

For high-tech industries, scholars study the impact of innovation efficiency on economic development relatively more. Cheng et 

al.[4] applied the three-stage super efficiency SBM model to measure, which showed that the overall trend was on the rise. Du 

et al.[5] used the spatial stochastic frontier method to calculate, which showed that the digital finance had a significant positive 

impact on it. Wang et al.[6] applied the three-stage network DEA model to calculate the Yangtze River Delta region, and the 

results showed that it showed a steady upward trend. Song et al.[7] applied DEA Malmquist model to calculate its regional 

heterogeneity. Which showed that the efficiency is high in the East and low in the west, and there are great differences between 

regions. With the help of DEA Malmquist, Zou et al.[8] analyzed the perspective of industry university research cooperation in 

the Yangtze River economic belt. The results show that the overall innovation efficiency is high. Fan et al.[9] applied DEA 

Malmquist method to calculate, and the results showed that the overall increase was slight. 

From the existing literature, it can be observed that research related to the topic of this article mainly focuses on individual 

provinces or divides regions for analysis. However, the lack of finer regional divisions results in insufficient reflection of regional 

differences. This paper divides 30 regions in China (excluding Xizang Autonomous Region) into seven major economic 

development regions for a more detailed analysis of regional differences. This paper conducts analysis based on a spatial 

econometric model and supplements relevant literature. 

THEORY MODEL 

DEA-Malmquist model 

The Malmquist productivity exponential model based on the distance function is proposed by Caves[10-11], period t and period 

t+1 are expressed as Equation (1). 
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From period t to period t+1 is expressed as Equation (2). 
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In Equation (2), EC is the technical efficiency index, and TC is the technical progress index[12]. 

Spatial Econometric Models 

Elhorst proposed a spatial regression model for panel data[13-14], and the spatial panel lag model (SLM model) is expressed as 

Equation (3). 
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The spatial panel error model (SEM model) is expressed as Equation (4). 
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The spatial panel Durbin model (SDM model) [15] is expressed as Equation (5). 
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In Equation (3)-(5), represents the value of the independent variable (explanatory variable) for the (i)-th spatial unit at time 

(t); represents the value of the dependent variable (explained variable) for the (i)-th spatial unit at time (t); is the spatial 

weight matrix, which describes the spatial relationships or adjacency relationships between spatial units; represents individual 

fixed effects;  is the spatial lag regression coefficient; and  is the spatial error regression coefficient. 

INDICATOR SYSTEM AND DATA SOURCES 

This study employs the DEA-Malmquist model to measure the innovation efficiency of high-tech industries[16]. The indicators 

used in this model include input and output variables, which are selected based on the perspective of innovation production in 

high-tech industries and synthesized from the findings of previous studies. The indicator system is shown in Table 1. 

Table 1. Indicator system for measuring innovation efficiency in high-tech industries 

The indicator system 

Input indicators output indicators 

Full-time equivalent of R&D personnel number of new product development projects 

internal expenditure on R&D number of valid invention patents 

expenditure on new product development sales revenue of new products 

amount of technology introduction contracts  

 

In addition to measuring the innovation efficiency of 30 provinces, municipalities, and autonomous regions in China (excluding 

Xizang Autonomous Region due to data limitations), this study conducts a regional disparity analysis by dividing the regions 

itx
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into seven major economic zones in Table 2. The regional division criteria consider both geographical proximity and the spatial 

compatibility of economic development. 

Table 2. Regional division criteria 

Regional division 

Northeast China Liaoning, Jilin, Heilongjiang 

North China Beijing, Tianjin, Hebei, Inner Mongolia 

Central China Shanxi, Henan, Hubei, Anhui, Hunan, Jiangxi 

East China Shanghai, Jiangsu, Zhejiang, Fujian, Shandong 

South China Guangdong, Guangxi, Hainan 

Northwest China Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi 

Southwest China Yunnan, Guizhou, Sichuan, Chongqing 

 

The sample data used in this study cover the period from 2009 to 2021. All data are sourced from the China Statistical Yearbook, 

China Science and Technology Statistical Yearbook, and China High-tech Industry Statistical Yearbook. Due to the severe lack 

of data for Xizang Autonomous Region, it has been excluded from the analysis to ensure the validity of the empirical results. 

Missing data for other provinces were supplemented using interpolation methods to ensure data completeness. 

SPATIAL DISPARITIES 

Regional Measurements  

The innovation efficiency of high-tech industries in the seven major economic zones is summarized in Figure 1-7. 

  
Figure 1. Northeast China Figure 2. North China 

  
Figure 3. Central China Figure 4. East China 
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Figure 5. South China Figure 6. Northwest China 

 
Figure 7. Southwest China 

Figure 1 shows that this efficiency in the three northeastern provinces has remained relatively stable over the past decade. In 

Liaoning Province, there was a slight increase in 2016. Compared to 2015, the number of new product development projects and 

sales revenue from new product development in 2016 saw a significant rise, reflecting the initial effectiveness of the 735 

enterprise technology innovation projects included in the key project plan of 2016. In other years, the innovation efficiency 

hovered around 1, with only the efficiency in 2010 being less than 1, indicating that the overall innovation level of high-tech 

industries in Liaoning Province is relatively high. In Jilin Province, this efficiency saw a significant increase in 2013, suggesting 

that the policies introduced by Jilin Province in 2013 to support enterprise technological innovation had noticeable effects. In 

Heilongjiang Province, this efficiency showed a slight improvement in 2017, reflecting the relatively slow impact of innovation 

awareness and innovation policies. 

Figure 2 shows that this efficiency in Beijing, Tianjin, and Hebei has remained generally stable, fluctuating around 1 with 

minimal deviations. This stability is attributed to the coordinated development of the Beijing-Tianjin-Hebei commercial circle, 

where the policies of the three regions exhibit spatial synergy effects, mutually promoting the steady development of innovation 

efficiency. In contrast, the innovation efficiency of high-tech industries in the Inner Mongolia Autonomous Region has been 

consistently low. Only in 2017 did it show a significant improvement, while in most other years, the innovation efficiency was 

less than 1. This indicates that the impact of industrial innovation policies in this region has been minimal and that enterprises 

lack an innovative spirit. 

Figure 3 shows that except for Henan Province, this efficiency in the other five provinces has remained around 1, with relatively 

small fluctuations. This indicates that the industrial innovation policies in these five central provinces share similarities and 

exhibit synergistic effects. In Henan Province, this efficiency experienced a significant increase in 2013, reflecting the 

remarkable results of allocating special funds to support the construction of major projects in strategic emerging industries. The 

increase in scientific and technological funding has stimulated enterprises' innovation output. Additionally, as a populous 

province, the improvement in the innovation awareness of technical talent in Henan has accelerated enterprises' innovation output. 

Figure 4 shows that due to its location along the coastal belt, it benefits from unique developmental advantages, with the average 

of this efficiency exceeding 1. Among these, Shanghai and Zhejiang Province are in leading positions. In comparison, this 
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efficiency in Shandong Province, Jiangsu Province, and Fujian Province has gradually approached 1, indicating a steady 

development trend. During the period from 2009 to 2015, this efficiency in the four provinces (excluding Shandong) exhibited 

significant fluctuations. However, on average, the innovation levels were relatively high. From 2015 to 2021, the fluctuations of 

this efficiency in the five provinces of East China were smaller, gradually stabilizing. This can be attributed to the synergistic 

development effects of the coastal economic belt, which have enhanced the innovation levels of coastal regions. 

Figure 5 shows that Hainan Province has had an average innovation efficiency greater than 1 over the past decade. However, its 

efficiency has shown significant fluctuations, displaying a cyclical pattern. This indicates that the input of scientific and 

technological funding and personnel in Hainan exhibits periodic fluctuations, and the effectiveness of its industrial innovation 

policies also follows a cyclical trend. This efficiency in the Guangdong and Guangxi regions have experienced relatively small 

fluctuations, with efficiency gradually approaching 1. This can be attributed to the strong synergistic effects between these 

neighboring regions. However, the synergy between the Two Guang Regions and Hainan Province is relatively weak, which 

contributes to the differences in their innovation efficiency trends. 

Figure 6 shows that this efficiency in the Northwest China has remained relatively stable over the past decade, fluctuating around 

1. This indicates that the industries benefit from good synergistic effects. In particular, Shaanxi, Gansu, and the Ningxia Region 

have shown minimal fluctuations in innovation efficiency over the past decade. This reflects the sustainability and consistency 

of industrial innovation policies in these three areas. In contrast, Xinjiang Uygur Autonomous Region experienced a significant 

improvement in innovation efficiency in 2012, while Qinghai Province saw a substantial increase in 2020. These spikes can be 

attributed to a sharp decrease in scientific and technological investment during those years. However, the effects of previous 

high levels of investment began to materialize in those years, resulting in a low-input, high-output phenomenon. Following these 

spikes, both regions returned to more normal levels of innovation efficiency, aligning with typical investment-output dynamics. 

Figure 7 shows that except for Sichuan Province, this efficiency in the other three regions has remained around 1, with relatively 

small fluctuations. This indicates that these three regions share similar industrial innovation policies, which exhibit synergistic 

effects in driving innovation efficiency. In Sichuan Province, this efficiency saw a significant increase in 2011, reflecting the 

remarkable results of the "611 Plan", which was the province's strategic emerging industries development plan. The substantial 

increase in scientific and technological fundings acquired by enterprises have effectively promoted their innovation productivity. 

Additionally, as the developmental core of the Southwest region, Sichuan benefits from national policy support and plays a 

leading role in driving innovation and industrial growth in the region. 

Global Analysis 

The innovation efficiency and decomposition of high-tech industries in 30 regions of China are shown in Figure 8. 

 

Figure 8. Overall efficiency values and decomposition of innovation efficiency in high-tech industries in 30 regions 
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TFP in Shanxi Province and Liaoning Province is attributed to improvements in technical efficiency. Since the differences in 

scale efficiency indices among the 30 regions are relatively small, the fluctuation trends of the technical efficiency index and the 

pure technical efficiency index are essentially consistent. However, the fluctuation amplitude of the technical efficiency index is 

smaller than that of the technological progress index, which results in the overall consistency between the fluctuation trends of 
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TFP and the technological progress index. From the perspective of regional differences TCP in most areas in Northwest, 

Southwest, Northeast, and Central China are less than 1. This indicates that the innovative performance of these industries is 

relatively poor, and there is still a need to strengthen innovation awareness. 

SPATIAL EFFECTS 

Variable Selection 

Factors influencing the innovation efficiency of high-tech industries primarily include six key dimensions: regional development 

level, regional education level, openness of the region, regional urbanization level, government support, and the proportion of 

technical talents. The specific measurement criteria[17] for these factors are in Table 3. 

Table 3. Measurement criteria for factors 

Factors measurement criteria 

government support 
The Proportion of Government Science and Technology Funding in the Total Regional 

Science and Technology Funding Raised 

the proportion of technical talents 
The Proportion of Regional Full-Time Equivalent R&D Personnel in the National Total 

Full-Time Equivalent R&D Personnel 

openness of the region The Proportion of Regional Total Import and Export Trade in Regional GDP 

regional development level The Proportion of Regional GDP in National GDP 

regional education level 
The Proportion of Students Enrolled in Higher Education Institutions in the Regional 

Total Population 

regional urbanization level The Proportion of Urban Population in the Regional Total Population 

 

Model Construction 

The Panel Spatial Lag Model (SLM) is expressed as Equation (6). 
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In Equation(6), M is the dependent variable-technological innovation productivity, w is the spatial weight matrix, ρ is the 

coefficient of the spatial lag term of the dependent variable, GS denotes government support, PT denotes proportion of technical 

talents, OL denotes openness of the region,DL denotes regional development level, EL denotes regional education level, UL 

denotes urbanization level, βi denotes coefficient of the independent variables, μi denotes  individual fixed effects. 

The Spatial Error Model (SEM) is expressed as Equation (7): 
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In Equation (7), U is the Error term,λis the Coefficient of the spatial lag term of random disturbances, other variables are as 

defined above. 

Further extending to the Spatial Durbin Model (SDM), the model is expressed as Equation (8): 
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In Equation (8), δi is the Coefficient of the spatial lag terms of the independent variables, other variables are as defined above. 

Empirical Analysis of Results 

The results of the fixed-effects model for the SLM are presented in Table 4. 
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Table 4. Fixed-effects of the panel SLM model 

Factors 
Panel SLM Model 

Mixture Model Fixed space Fixed time Double fixed 

government support 1.085(0.000***) -0.828(0.418) 0.580(0.048**) -0.741(0.455) 

the proportion of technical talents -4.859(0.138) -9.426(0.321) -0.891(0.781) -9.331(0.303) 

openness of the region -0.325(0.088*) -0.264(0.557) -0.131(0.560) -0.300(0.616) 

regional development level 8.021(0.038**) -13.121(0.430) 0.967(0.808) -18.936(0.282) 

regional education level -19.430(0.006***) 19.757(0.495) -15.710(0.024**) 3.313(0.906) 

regional urbanization level 1.841(0.000***) -2.592(0.130) 0.710(0.254) -0.239(0.947) 

spatial lag term 0.263(0.018**) 0.031(0.825) -0.409(0.014**) -0.447(0.008***) 

LM-lag 1.280(0.258) 0.004(0.948) 1.989(0.158) 0.734(0.391) 

Robust LM-lag 36.916(0.000***) 0.015(0.902) 4.077(0.043**) 0.223(0.636) 

LM-err 1.606(0.205) 0.004(0.945) 0.994(0.319) 0.689(0.406) 

Robust LM-err 37.242(0.000***) 0.015(0.900) 3.083(0.079*) 0.178(0.673) 

Hausman 6.946(0.034) ** -4.395(0.733) -22.599(0.002***) -24.491(0.000***) 

*Indicate significance at the 10% level, **indicate significance at the 5% level, *** indicate significance at the 1% level. 

 

Table 4 shows that the mixed-effects model shows the best regression performance. Except for the coefficient of technical talent 

proportion, which is not significant at the 10% level, all other variables are significant. Under the spatial fixed effects, none of 

the influencing factors are significant, indicating poor regression performance. Under the time-fixed effects, only government 

support, regional education level, and spatial lag terms are significant, while other variables are not significant, indicating 

relatively poor regression performance. Under the two-way fixed effects, only the spatial lag term is significant, but the overall 

regression performance is poor. 

The LM (Lagrange Multiplier) test results suggest that neither the spatial fixed effects nor the two-way fixed effects models pass 

the test (p>0.05). Conversely, the mixed-effects model and the time-fixed effects model show significance under the Robust LM-

lag and Robust LM-err tests at the 10% level. Therefore, the mixed-effects approach in the Panel SLM model is preferable. 

The results of the fixed-effects model for the SEM are presented in Table 5. 

Table 5. Fixed-effects of the panel SEM model 

Factors 
Panel SEM Model 

Mixture Model Fixed space Fixed time Double fixed 

government support 1.325(0.000***) -0.836(0.414) 0.599(0.037**) -0.454(0.643) 

the proportion of technical talents -5.390(0.102***) -9.410(0.321) -1.041(0.754) -9.171(0.303) 

openness of the region -0.473(0.010***) -0.257(0.567) -0.174(0.437) -0.477(0.434) 

regional development level 9.521(0.013**) -13.053(0.434) 1.199(0.764) -21.723(0.204) 

regional education level -22.025(0.002***) 19.831(0.494) -15.801(0.021**) -0.044(0.998) 

regional urbanization level 2.383(0.000***) -2.625(0.126) 0.858(0.163) 0.852(0.810) 

spatial lag term 0.136(0.317) 0.025(0.858) -0.465(0.006***) -0.504(0.003***) 

LM-lag 11.780(0.001***) 0.022(0.882) 6.005(0.014**) 2.120(0.145) 

Robust LM-lag 24.468(0.000***) 0.002(0.965) 0.577(0.447) 0.007(0.931) 

LM-err 1.667(0.197) 0.041(0.839) 7.209(0.007***) 7.498(0.006**v) 

Robust LM-err 14.355(0.000***) 0.021(0.885) 1.781(0.182) 5.385(0.020**) 

Hausman -0.944(0.995) -7.049(0.423) -30.911(0.000***) -32.382(0.000***) 

 

Table 5 shows that the conclusions are consistent with those of the SLM model. The mixed-effects model demonstrates the best 

regression performance: all variables are significant except for the coefficient of the spatial lag term at the 10% level. Moreover, 

compared to SLM, the mixed-effects model in SEM is more statistically significant. LM test results also reveal that the SEM 

model's mixed-effects model performs better overall. The mixed-effects model passes all tests, except for the LM-err test in some 

cases. Hence, among fixed-effects configurations, the mixed-effects model of SEM is optimal. 

The random-effects results for both SLM and SEM are summarized in Table 6. 
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Table 6. Random-effects of panel SLM and SEM models 

Factors Panel SLM Model Panel SEM Model 

Constant 1.100(0.000***) 1.144(0.000***) 

government support 0.445(0.139) 0.475(0.144) 

the proportion of technical talents -1.859(0.580) -1.404(0.707) 

openness of the region 0.001(0.994) 0.013(0.948) 

regional development level 1.962(0.642) 1.485(0.762) 

regional education level -12.425(0.088*) -15.727(0.050**) 

regional urbanization level 0.345(0.551) 0.500(0.388) 

spatial lag term 0.046(0.742) 0.030(0.833) 

teta 0.996(0.000***) 0.000(0.999) 

 

Table 6 shows that in the random-effects results of the Panel SLM model, only the impact of regional education level is significant 

at the 10% level, while other variables are not. Similarly, the SEM model's random-effects results are consistent with SLM, 

where only regional education level’s impact at the 5% level is significant. 

Table 7. Fixed and random-effects of the panel SDM Model 

Factors 
Fixed Effects Random-

Effects Mixture Model Fixed space Fixed time Double fixed 

government support 
0.555 

(0.092*) 

-1.189 

(0.282) 

0.262 

(0.426) 

-0.279 

(0.800) 

0.492 

(0.141) 

the proportion of technical talents 
-3.246 

(0.423) 

-12.243 

(0.229) 

-3.618 

(0.358) 

-10.455 

(0.292) 

-2.457 

(0.550) 

openness of the region 
-0.011 

(0.963) 

0.016 

(0.979) 

-0.243 

(0.361) 

-0.205 

(0.762) 

-0.060 

(0.820) 

regional development level 
4.275 

(0.351) 

0.329 

(0.987) 

3.168 

(0.480) 

-3.488 

(0.860) 

3.084 

(0.513) 

regional education level 
-11.724 

(0.136) 

24.309 

(0.442) 

-17.805 

(0.021**) 

17.390 

(0.572) 

-11.486 

(0.145) 

regional urbanization level 
0.437 

(0.546) 

-2.438 

(0.536) 

1.627 

(0.039**) 

0.788 

(0.843) 

0.543 

(0.459) 

Lagged government support 
1.885 

(0.014**) 

6.849 

(0.068*) 

0.307 

(0.844) 

9.021 

(0.053*) 

0.488 

(0.751) 

Lagged proportion of technical talents 
-18.802 

(0.182) 

-8.874 

(0.728) 

0.612 

(0.972) 

-10.211 

(0.696) 

-6.150 

(0.738) 

Lagged regional openness level 
-0.016 

(0.976) 

-1.687 

(0.250) 

-1.454 

(0.154) 

-3.680 

(0.177) 

0.146 

(0.799) 

Lagged regional development level 
30.655 

(0.071*) 

-19.665 

(0.754) 

-9.143 

(0.737) 

-131.262 

(0.171) 

8.129 

(0.766) 

Lagged regional education level 
-10.459 

(0.747) 

-24.312 

(0.768) 

-97.158 

(0.045**) 

-46.308 

(0.644) 

0.506 

(0.988) 

Lagged urbanization level in the region 
0.632 

(0.717) 

-0.644 

(0.913) 

7.544 

(0.045**) 

21.361 

(0.128) 

-0.514 

(0.801) 

spatial lag term 
0.028 

(0.841) 

-0.012 

(0.929) 

-0.495 

(0.003***) 

-0.330 

(0.046**) 

0.012 

(0.929) 

Constant / / / / 
1.029 

(0.299) 

teta / / / / 
0.996 

(0.000***) 

Wald-lag 
12.043 

(0.061*) 

8.292 

(0.217) 

6.768 

(0.342) 

11.124 

(0.084*) 

1.212 

(0.976) 

Wald-err 
14.125 

(0.028**) 

8.197 

(0.224) 

5.148 

(0.524) 

10.704 

(0.098*) 

0.369 

(0.999) 

 

Finally, based on Tables 4-6, the regression results of the fixed effects in the panel SLM model and panel SEM model indicate 

that the mixed effects model performs better. Therefore, when comparing fixed effects and random effects, even if the Hausman 
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test for spatial fixed effects or temporal fixed effects suggests selecting fixed effects, it should not be adopted. The focus should 

instead be on comparing the mixed effects model under fixed effects and random effects. For the panel SLM model, the p-value 

of the Hausman test for the mixed model is less than 0.05, leading to the selection of the fixed effects model. For the panel SEM 

model, the p-value of the Hausman test for the mixed model is greater than 0.05, leading to the selection of the random effects 

model. 

A comparative analysis between fixed-effects and random-effects reveals that for both SLM and SEM, the mixed-effects fixed 

model performs better. Ultimately, the Panel SLM mixed-effects model offers the best goodness of fit. 

The fixed-effects and random-effects results for the SDM model are shown in Table 7[18]. 

Table7 shows that the mixed-effects fixed configuration in the SDM model shows relatively weak regression performance, with 

only government support and some interaction terms being significant at the 10% level. Moreover, in the random-effects model, 

none of the key variables are statistically significant, further indicating poor model fit. The Wald test[19] results reveal that the 

mixed-effects model under fixed effects shows higher levels of significance compared to random-effects models at the 10% level, 

but not as robust at the 5% level. This suggests limited applicability of the SDM model. Simplification to SLM or SEM may 

yield better results. 

Combining the results of SLM, SEM, and SDM, the mixed-effects fixed model of SLM delivers the best goodness of fit and is 

most applicable. The model expression[20] is expressed as Equation(9). 

itiitititititit

N

j

jtijit ULELDLOLPTGSMwM  +++−+−−+= 
=

841.143.19021.8325.0859.4085.1263.0
1

  (9)

 

In Equation (9), M represents innovation efficiency in high-tech industries, and all other variables retain their previous meanings. 

It is noted that original data expressed as percentages were scaled by a factor of 100 to maintain significance levels in the final 

model. 

In this model, since the original data for regional development level, regional education level, regional openness level, regional 

urbanization level, local government support, and the proportion of technical talent are expressed as percentages, these 

corresponding influencing factors need to be multiplied by 100 in the final selected model, while their significance remains 

unchanged. 

From the analysis of the model's significance, its economic implications can be observed. local government support, regional 

economic development level, and regional urbanization level have a positive spatial effect on the innovation efficiency of high-

tech industries, while the proportion of technical talent, regional openness level, and regional education level exhibit a spatial 

negative effect. The coefficient of the spatial error term is 0.263, indicating that the innovation efficiency demonstrates a 

significant spatial spillover effect. This suggests that the innovation efficiency of high-tech industries in neighboring provinces 

has a notable clustering characteristic. From a spatial perspective, this indicates that the local government support, regional 

economic development level, and regional urbanization level among the 30 regions can significantly enhance the innovation 

efficiency of high-tech industries. However, regional openness level and regional education level exhibit a significant inhibitory 

effect, which reflects the substantial regional disparities in openness level and education level among the 30 regions. Therefore, 

narrowing these regional disparities is essential to gradually highlight the positive effects of openness level and education level. 

CONCLUSIONS 

This study utilizes the DEA-Malmquist model to calculate the efficiency of innovation in fields with high technology in 30 

regions over the past decade and conducts a regional difference analysis. The results show that This efficiency in the commercial 

circle including Beijing, Tianjin and Hebei and china’s coastal regions is relatively higher compared to others. This indicates 

that regional economic development contributes to the higher innovation efficiency. In other regions, the overall innovation 

efficiency values fluctuate around 1, indicating relatively stable development. However, in some specific regions, innovation 

efficiency has been improved under the influence of industry-related innovation policies or plans, though these effects are mostly 

short-term and have not shown long-term impacts. 

Furthermore, the overall high-tech innovation efficiency in different regions of China over 13 years. The results reveal that the 

regional differences in the technical efficiency index are mainly caused by different pure technical efficiency index. However, 

the regional differences in the technical efficiency index are relatively small, the regional differences in total factor productivity 
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are primarily driven by differences in the technological progress index. This suggests efforts should focus on promoting 

technological progress. 

Based on the regression results of spatial effects, a comparison of the panel SLM, SEM, and SDM models reveals that the panel 

SLM model is more suitable for analyzing spatial effects. Additionally, government support, economic development, and 

urbanization are spatially positive to innovation efficiency, while technical talent, openness, and education exhibit negative 

spatial effects. The reasons behind these findings are analyzed, and the following recommendations are proposed. 

Firstly, it is essential to leverage regional advantages in high-tech industry development and promote coordinated development 

within commercial clusters to gradually reduce regional disparities in innovation efficiency. At the same time, it is important to 

capitalize on each region's unique characteristics by implementing localized industrial policies and making effective use of 

national support policies for remote areas. For example, commercial clusters such as the Beijing-Tianjin-Hebei region, the 

Yangtze River Delta, and the Pearl River Delta can enhance their industrial innovation efficiency through synergistic effects. 

Meanwhile, regions like Northwest and Southwest China can fully utilize relevant national policies to maximize their impact. 

Secondly, under the support of government-related industrial policies or planning, high-tech enterprises should fully utilize the 

benefits of these policies, improve their innovation mechanisms, and enhance employees' innovation awareness, thereby 

fundamentally increasing the enterprises' innovation capabilities. Most importantly, the focus should not be limited to short-term 

goals; instead, enterprises need to formulate innovation strategies suitable for long-term development to steadily improve 

innovation efficiency. The government should aim to establish a relatively balanced state of innovation investment across 

different regions. This involves reducing innovation investment in economically well-developed regions and, conversely, 

increasing innovation investment in less developed regions. Under the framework of new productivity, innovative production 

methods should be explored.  

Thirdly, results shows each region should fully leverage the factors that generate positive spatial effects on the innovation 

efficiency of high-tech industries. Local governments should carefully review and interpret relevant support policies, steadily 

promote high-quality regional economic development, and enhance the level of urbanization. For factors that exhibit negative 

spatial effects, efforts should be made to identify the underlying causes and implement changes tailored to the region's specific 

innovation development needs. 

From the perspective of technical talent, efforts should be made in two areas. On one hand, increase investment in technical 

talent and allocate appropriate funding for scientific research to ensure the smooth progress of technological projects. On the 

other hand, improve policies for attracting technical talent and enhance welfare benefits to build a high-level technical talent 

pool, thereby gradually attracting and retaining talent. From the perspective of openness, it is evident that many regions have 

relatively low levels of foreign trade, which Exerts negative influences on innovation. Therefore, it is crucial to strengthen 

technological exchanges and trade cooperation between regions to enhance innovation capacity. The negative spatial effect of 

education is primarily due to significant regional disparities in education levels. Thus, efforts should focus on narrowing the 

education gap between regions by improving access to quality education and resources, ultimately fostering a more balanced and 

supportive environment for innovation. 

ACKNOWLEDGMENT 

This work was supported by the 2023 Shanxi Provincial Higher Education Philosophy and Social Science Research Project: 

"Spatial Pathways for the Digital and Intelligent Transformation of Shanxi's Equipment Manufacturing Industry from the 

Perspective of Technological Innovation Efficiency" (Project Number: 2023W190), and 2023 Shanxi Provincial Philosophy and 

Social Science Planning Project: "Pathways and Policy Options for Shanxi's Energy Economic Transition and High-Quality 

Development under the Dual Carbon Goals" (Project Number: 2023YY321). 

REFERENCES 

[1] DC Fan, SN Li. Research on technological innovation efficiency of high-tech industry considering spatial effects. Studies 

in Science of Science, 2018, 36(05): 901-912. 

[2] Aiger D J, Lovell C A K, Schmidt P. Formulation and Estimation of Stochastic Fronitier Production Founction Models. 

Journal of Econometries, 1977, 6(1): 21-37. 

[3] Chernes A, Cooper WW, Rhodes E. Measuring the Efficiency of Decision Making Units. European Journal of Operational 

Research, 1978, 2(6): 429-444. 



Membrane Technology 
ISSN (online): 1873-4049 

519 Vol: 2025 | Iss: 1 | 2025 | © 2025 Membrane Technology 

[4] GB Cheng, C Zhao, Y Li. Regional differences and dynamic evolution of innovation efficiency in China's high-tech 

industry. Statistics & Decision, 2023, 39(02): 173-178. 

[5] L Du, ZQ Wang. An Analysis of the Digital Finance Improvement on Improving the Technologial Innovation Efficency 

of China's High-tech Industry Based on the Spital Econometric Model. Social Science Front, 2022, (09): 84-91. 

[6] HH Wang, Y Wang, YJ Li, et al. Research on the Evaluation of Technological Innovation Efficiency of High-tech 

Industries in the Yangtze River Delta Region: Based on Three-stage Network DEA Model with Shared Inputs. East China 

Economic Management, 2022, 36(08): 26-33. 

[7] YG Song, X Zhang. Innovation Efficiency Measurement of China's High-tech Industry. Statistics & Decision, 2022, 

38(10): 86-91. 

[8] W Zou, XY Wang, FJ Wan.Efficiency Evaluation of Industry-University-Research Cooperative Innovation inHigh-tech 

Industries of Yangtze River Economic Belt. Science and Technology Management Research, 2022, 42(04):81-88. 

[9] DC Fan, XM Gu. An analysis of the key influencing factors of technological innovation efficiency in high-tech industries: 

An empirical study based on the DEA-Malmquist and Bayesian Model Averaging approach. Science Research 

Management, 2022, 43(01):70-78. 

[10] Malmquist S. Index Numbers and Indifference Curves. Trabajos de Estatistica, 1953, 4:209-242. 

[11] Caves DW, Christensen LR, and Diewert WE. Multilateral Comparisons of Output, Input, and Productivity Using 

Superlative Index Numbers. The Economic Journal, 1982, 92(3):73-86. 

[12] Chen S, Feng Y, Lin C, et al. Innovation efficiency evaluation of new and high technology industries based on DEA-

Malmquist index. Journal of Interdisciplinary Mathematics, 2017, 20(6-7):1497-1500. 

[13] GM Wang, XC Zhao. The Impact of Intellectual Property Protection on Innovation Efficiency of High-tech Industry: 

Empirical Analysis by Spatial Econometric Model. Science and Technology Management Research, 2021, 41(07):124-

131. 

[14] XG Gao. Spatial heterogeneity effect of the Chinese high technology industry's innovation efficiency factors—Empirical 

research based on geographically weighted regression. World Regional Studies, 2016, 25(04):122-131. 

[15] HZ Dong, ZX Cao, RJ Zhang.Two-stage Green Innovation Efficiency and Influencing Factor Identification in China's 

High-tech Industry. Statistics & Decision, 2022, 38(06):44-49. 

[16] Yu H, Ke H, Ye Y, et al. Agglomeration and flow of innovation elements and the impact on regional innovation efficiency. 

International Journal of Technology Management, 2023, 92(3): 229-254. 

[17] QC Wan, XL Yang, F Deng.Study on Convergence of Innovation Efficiency of High-tech Industry and Its Influencing 

Factors in China's Provinces: Based on the Perspective of Spatial Economics. Science and Technology Management 

Research, 2018, 38(08):80-86. 

[18] CX Wang, YJ Ren. Research on Spatial Spillover Effect of the Green Innovation Efficiency of High-tech Industries. 

Industrial Economic Review, 2016, 7(06):76-84. 

[19] XL Li, Guanghe Ran, Wei Zheng. Spatial Agglomeration of Science and Technology Services and Improvement of 

Enterprise Innovation Efficiency——Empirical Evidence from High-tech Industries in China.R&D Management, 2017, 

29(04):1-10. 

[20] HB Gui. Innovation Efficiency and Its Influencing Factors of China's High-Tech Industry Based on the Spatial Econometric 

Model. Economic Geography, 2014, 34(06):100-107. 


