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Abstract:

This paper discusses the topic of thermal control and distributed energy coordinated control in smart distribution networks,
with the goal of improving the efficiency of energy resource utilization and consolidating the stability and flexibility of the
system. Given the widespread adoption of distributed energy, how to subtly integrate thermal control and distribution operations
has become a core issue. This paper first proposes a distributed energy coordinated control strategy based on a consensus
mechanism to achieve information communication and collaborative optimization among nodes. Furthermore, a mathematical
framework for thermal control and distributed energy coordinated control is constructed, including multiple real-world factors
such as energy resource demand fluctuations and energy storage device characteristics. To confirm the effectiveness of the
strategy, a detailed simulation analysis was carried out. The simulation results show that the proposed control algorithm is
sufficient to substantially reduce thermal energy consumption, improve energy efficiency. Detailed data show that after
adopting the algorithm, the system energy consumption dropped sharply by 15.8% and the energy supply fluctuation was
attenuated by 12.3%. This study provides theoretical support and technical reference for thermal energy supervision and
coordinated control of distributed energy in future smart distribution networks.

Keywords: Smart distribution network; Consensus algorithm; Thermal energy management; Coordinated control of
distributed energy.

INTRODUCTION

With the rising demand for energy and the innovation of the global energy resource architecture, traditional power grids are
facing multiple problems such as low efficiency, waste of resources and environmental pollution. As a highly efficient, clean
and flexible energy management system, the smart distribution network has gradually become a key trend in the evolution of the
power grid. This grid can not only ensure the high-quality transmission and distribution of electric energy, but also leverage
information and communication technology to achieve flexible control of distributed energy, and has unique highlights in heat
regulation and coordinated control of distributed energy. Thermal energy management is becoming increasingly important in
smart distribution networks. Thermal energy is an important secondary energy source that spans many fields such as heating,
cooling and industrial manufacturing. Exploring efficient management strategies, optimizing thermal energy utilization and
reducing energy loss are the core issues of smart grid research. At the same time, the effectiveness of distributed energy in
alleviating the pressure on traditional power systems is becoming increasingly evident, including solar energy, wind power,
energy storage systems, etc. Its decentralized and random characteristics make the coordination of supply and demand in smart
distribution networks a pending issue.

In recent years, many scholars have focused on the thermal control of smart grids and the coordinated control of distributed
energy. Reference [1] advocates a distributed control method with a multi-agent system as the core, which solves the efficiency
and reliability problems of traditional intensive systems during expansion, but does not delve into the intertwined relationship
between thermal energy and electrical energy. Reference [2] conceives a heat and power co-regulation strategy that relies on
real-time data to simultaneously dispatch electricity and heat. Although it greatly improves energy efficiency, it is limited by
centralized data processing and is difficult to adapt to large-scale distributed energy systems. Reference [3]'s game theory-based
optimization scheduling reveals the competitive relationship between suppliers and optimizes distributed energy distribution.
However, in actual operation, the game equilibrium is difficult to find due to energy uncertainty. Reference [4] Deep
reinforcement learning-driven distributed energy control, intelligent algorithms predict supply and demand, and are significantly
efficient, but high computing requirements restrict its practicality. Reference [5] The thermal energy storage-oriented control
strategy balances supply and demand and reduces heat consumption, but it is not well adapted to large distributed energy systems.
The distributed coordinated thermal energy management, node collaboration, and thermal power coordination in the literature
[6] need to be improved in terms of stability when facing complex energy variables.

This paper proposes a method for coordinated control of thermal energy management and distributed energy in smart distribution
networks based on consensus algorithm [7]. Consensus algorithm, as a distributed coordinated control algorithm, can ensure
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global consistency without central control through the collaborative work between various nodes, and has the characteristics of
high efficiency and stability. This paper introduces consensus algorithm into thermal energy management and coordinated
control of distributed energy in smart distribution networks, aiming to improve the efficiency and flexibility of energy
management through distributed control.

THERMAL MANAGEMENT IN SMART DISTRIBUTION NETWORKS
2.1 Overview of thermal management

Smart distribution networks (SDGs) are a new type of energy system that integrates electricity, thermal energy, and information
and communication technologies, aiming to optimize the production, transmission, and consumption of energy [8]. Thermal
management has become one of the key elements in smart distribution networks. Thermal management is not only the core link
of the combined heat and power (CHP) system, but also a bridge to achieve the coordinated operation of electricity and thermal
energy [9]. In the scenario where large-scale distributed energy is connected to smart distribution networks, thermal management
faces more challenges. Through thermal energy management, smart distribution networks can reasonably dispatch thermal
energy while meeting electricity demand, ensure the effective use of thermal energy, and reduce energy waste.

In addition, thermal energy management can also serve as a flexible energy storage tool in smart distribution networks. For
example, by storing excess electricity in thermal energy, excess electricity can be converted into thermal energy storage during
the low electricity demand period, and then released during the peak period to reduce the load on the power system [10]. Thermal
energy management is not only a key link in energy coordination in smart distribution networks, but also plays an important role
in reducing system energy consumption, improving economic benefits, and reducing carbon emissions.

2.2 Thermal energy demand forecasting algorithm

Accurate thermal energy demand forecasting is based on thermal energy management in smart distribution networks. The
accuracy of the forecast directly affects the formulation of scheduling plans and the effective use of energy. With the increasing
complexity of modern energy systems, how to effectively forecast dynamically changing thermal energy demand has become a
research focus. At present, thermal energy demand forecasting mainly adopts two types of methods: forecasting methods based
on traditional statistical models and intelligent forecasting methods based on deep learning.

2.2.1 Demand forecasting based on traditional statistical models

The ARIMA model can provide relatively accurate forecasts under relatively stable demand conditions by capturing the time
correlation of historical data. Reference [11] proposed a thermal energy demand forecasting method based on the ARIMA model
and successfully applied it to small-scale regional energy systems. However, this type of model shows certain limitations when
facing sudden fluctuations in demand or scenarios with high uncertainty. For dynamically changing data in smart distribution
networks, these traditional methods often cannot effectively cope with complex nonlinear relationships.

2.2.2 Prediction methods based on deep learning

Deep learning methods, especially long short-term memory networks (LSTM) and gated recurrent units (GRU), have shown
great potential in dealing with thermal energy demand forecasting problems with long-term dependency characteristics. LSTM
can capture long-term dependencies in time series through its special network structure, overcoming the shortcomings of
traditional methods in nonlinear scenarios. Reference [12] proposed a thermal energy demand forecasting model based on LSTM,
and verified the superiority of this method in dealing with large-scale data and complex nonlinear demand through a large amount
of experimental data. In contrast, GRU, as a simplified version of LSTM, has higher computational efficiency and also has good
generalization ability in medium- and long-term thermal energy demand forecasting.

2.3 Thermal energy dispatch optimization algorithm
2.3.1 Linear programming and nonlinear programming

Linear programming (LP) and nonlinear programming (NLP) are usually used in power dispatch problems, but they are equally
important in thermal energy management. Assuming that the thermal energy demand in a certain period of time is H(t) and the
electric energy demand is E (t), the following linear optimization problem can be constructed:

Minimize € = %1_; (aH(t) + bE(t)) 1)
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a and b are the weight coefficients of heat energy and electric energy, respectively, indicating the cost of energy. Nonlinear
programming is more common in practical applications, especially when faced with complex heat demand curves and energy
supply curves. Nonlinear programming can more accurately describe various nonlinear constraints in actual energy systems by
optimizing nonlinear objective functions. A typical nonlinear scheduling problem can be expressed as:

Minimize C = Y1_; (aH(t)* + bE(t)?) )

This formula takes into account the quadratic relationship of energy demand and can more flexibly reflect changes in energy
costs.

2.3.2 GAand PSO

GA and PSO are heuristic optimization algorithms that are widely used in complex thermal energy scheduling problems because
they do not depend on the specific form of the problem [13]. Genetic algorithms simulate the biological evolution process, select,
crossover and mutate a series of possible solutions, and gradually approach the optimal solution. Particle swarm optimization
finds the optimal solution by simulating the individual collaborative behavior in swarm intelligence. Assuming that each particle
represents a scheduling plan, the update formula for its position and speed is:

vi(t+ 1) = wvi(t) + 111 (pi(£) — x;(£)) + ;12 (g (1) — x;(2)) @3)
xi(t + 1) = xi(t) + Ui(t + 1)

p; is the individual optimal solution, g is the global optimal solution, w, c;, c,are the weight parameters of the velocity update,
1,7, are random numbers.

2.3.3 Multi-objective optimization

In practical applications, thermal energy management not only needs to optimize costs, but also needs to consider multiple
objectives such as system efficiency and carbon emissions. Multi-objective optimization algorithms, such as NSGA-II, balance
different objectives by generating multiple Pareto optimal solutions. The specific optimization problem can be expressed as:

Minimize (Cy, Cy, ..., Cy) 4)

Cy, C,, ..., C,, represent various objective functions, such as cost, emission and system efficiency.
DISTRIBUTED ENERGY COORDINATION CONTROL

3.1 Types and characteristics of distributed energy

The characteristics of various energy sources are very different, and they must be appropriately integrated and managed in smart
distribution networks. Solar energy is the mainstream of distributed energy. It converts sunlight into electricity through a
photovoltaic system. Solar energy is pure and clean, and is available all over the world. However, its intermittent and uncertain
nature, especially at night or in the haze, can cause a sharp drop in production capacity. Therefore, solar power generation is
often combined with energy storage devices to balance supply and demand fluctuations. Wind power converts wind power into
electricity through turbines, with an extraordinary energy conversion rate. Wind power production also fluctuates greatly,
affected by wind speed and weather. Wind energy fluctuations place high demands on the stability of the power grid, so in smart
distribution networks, wind energy systems are often combined with other energy sources or energy storage to reduce the erosion
of the system by fluctuations. Geothermal energy is stable and sustainable, drawing heat from underground to generate electricity
or heat. Unlike sunlight and wind power, geothermal energy is not limited by climate and is stable [15]. Therefore, in the smart
distribution network, geothermal energy plays the role of tuning the system balance and buffering the fluctuations of other
sources. Biomass energy, which generates electricity or heat by burning wood, crop residues, etc. Its main characteristics are
abundant raw materials and low cost, but the combustion efficiency and environmental protection are inferior to other renewable
energy. With the progress of science and technology, biomass power generation companies have improved fuel efficiency and
reduced emissions, and gradually become an important auxiliary source for smart distribution networks. Micro hydropower,
which uses the flow energy of water to generate energy, has both high efficiency and continuous production capacity.
Hydropower generation depends on natural water sources and is limited by geographical location. Under suitable conditions,
micro hydropower can provide continuous electricity for smart distribution networks.

3.2 Difficulties and Challenges of Distributed Energy Coordination Control
3.2.1 Uncertainty and Volatility
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Distributed energy (especially renewable energy) has high volatility and uncertainty. For example, the output of solar and wind
energy depends on external environmental factors such as weather and time, and often exhibits nonlinear, random dynamic
changes [16]. This volatility makes it difficult for energy supply to accurately match load demand, thereby increasing the
complexity of scheduling. To meet these challenges, the application of prediction and control technology is essential.

3.2.2 Real-time Coordination and Scheduling of Energy

Energy scheduling in smart distribution networks must be able to respond to changes in supply and demand in real time to ensure
stable operation of the system. Real-time coordinated control requires efficient algorithms to handle the asynchronous output of
distributed energy and the dynamic changes of load. Distributed control systems can solve real-time scheduling problems through
the collaborative work of distributed nodes. In a distributed control system, each node makes scheduling decisions based on local
information and global goals. For example, in a multi-agent system (MAS), each agent achieves the optimal scheduling of the
global system through communication with other agents [17]. The importance of real-time control lies not only in maintaining
the balance of energy supply and demand, but also in quickly responding to changes in the external environment and reducing
system instability caused by energy fluctuations.

3.2.3 Energy storage and scheduling

Distributed energy allocation often requires the improvement of energy storage systems, especially in situations with a high
penetration of renewable energy. Energy storage facilities such as battery cells and thermal energy storage equipment can
effectively coordinate supply and demand fluctuations [18]. This architecture monitors the load status of the power network in
real time and appropriately adapts the use of battery cell energy storage and thermal energy storage resources to reduce system
operating costs.

Minimize € = YT_, (a- P,(t) + b - E(t)) (5)

P, (t) is the amount of electrical energy stored in the energy storage system at time t. The scheduling of the energy storage system
can not only balance supply and demand, but also improve the robustness of the system and reduce load fluctuations caused by
fluctuating energy sources.

3.3 Distributed Control and Consensus Algorithm

The distributed control method based on the multi-agent system (MAS) achieves the optimal scheduling of energy through the
collaborative work between agents. As one of the core algorithms of distributed control, the consensus algorithm can ensure that
each agent in the system achieves globally consistent optimization goals under decentralized decision-making.

3.3.1 Multi-agent System (MAS)

Each agent collects local data and exchanges information with other agents to make decisions based on global goals. Reference
[19] proposed a distributed energy coordinated control method based on MAS, which achieves efficient scheduling of distributed
energy systems through autonomous decision-making by each agent. Under the MAS framework, the objective function of each
agent can be expressed as:

Minimize J; = X1 (¢; - P;(t)) (6)

P;(t) represents the energy output of agent i at time t, and ¢; is the cost coefficient. Through information exchange and
coordination among multiple agents, each agent can eventually achieve global optimal scheduling while meeting its own needs.

3.3.2 Application of consensus algorithm

The consensus mechanism is an algorithm that ensures the synchronization of decisions among nodes in a distributed system. It
is particularly suitable for the issue of distributed energy allocation in a multi-intelligent entity architecture. In a distributed
energy system, each intelligent unit needs to implement coordinated scheduling based on local and global intelligence through
communication and collaboration. The consensus mechanism can effectively cope with the challenges of asynchronous
communication in a distributed energy system. The basic formula of the consensus algorithm can be expressed as follows:

xi(t+1) = x(8) + € Tjen, (06 — x,(0)) )

x; (t) represents the state of agent i at time t, N;is the neighborhood set of agent i, and € is the control gain. Through iterative
updates, the agents can eventually achieve global consensus under certain conditions, that is, the states of each agent tend to be
consistent, thereby achieving synchronous scheduling of the global system.
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3.3.3 Game in the distributed energy market

In the distributed energy market, there are competition and cooperation relationships among multiple energy suppliers. Game
theory models provide a theoretical basis for studying coordination and competition in distributed energy systems. This paper
proposes an energy market optimization model based on game theory, analyzing how multiple distributed energy suppliers can
achieve overall optimization of the system through collaboration in a competitive environment. The revenue function of each
distributed energy supplier can be expressed as:

Ui=R;—( (8)

R; is the revenue function, which represents the income of supplier i, and C; is the cost function. Through the polynomial model,
the overall optimization of the energy market can be achieved while considering the interests of each supplier. Distributed energy
coordination control plays an important role in smart distribution networks. Through effective control and scheduling strategies,
it realizes the efficient integration of different types of distributed energy [20]. With the further increase in the penetration rate
of renewable energy, distributed energy coordination control will become an indispensable core technology in smart distribution
networks, and will play a more important role in reducing system operating costs, improving energy utilization efficiency and
promoting the development of the energy market.

OPTIMIZATION AND ALGORITHM APPLICATION IN SMART DISTRIBUTION NETWORK

With the rapid development of smart distribution network technology, the complexity and flexibility of energy management have
also increased. In order to achieve efficient energy distribution and scheduling, the application of optimization models and
advanced algorithms has become particularly critical. This paper explores the application of mixed integer linear programming
(MILP) model and game theory-based scheduling method in smart distribution network, and analyzes their performance in
dealing with thermal energy management and distributed energy scheduling problems by comparing traditional optimization
algorithms and heuristic algorithms.

4.1 Application of optimization models in thermal and electrical energy management
4.1.1 Mixed integer linear programming (MILP) model

Mixed integer linear programming (MILP) model is a tool commonly used in smart distribution network optimization, especially
in dealing with complex energy management problems involving discrete and continuous decision variables. For example, the
control of start-stop equipment (such as generators) can be expressed by discrete variables, while the distribution of electrical
energy and thermal energy belongs to continuous variables [21]. Through the MILP model, the energy system can take into
account the operating constraints and requirements of the system while considering cost minimization. A MILP model is
designed for the comprehensive dispatch optimization of thermal energy and electric energy in smart distribution networks. The
objective function is as follows:

e cxi(®) ©)
E(t) and H(t) represent the electrical energy and thermal energy at time t, respectively. x;(t) represents the start and stop
status of equipment i at time ¢ (1 for start and O for stop). a. b and c;are cost coefficients. By solving this optimization model,
this paper can effectively balance energy costs and supply and demand fluctuations.

Minimize ¢ = ¥T_, (aE(t) + bH(®)) + % ©_, %

4.1.2 Energy dispatch optimization based on game theory

In distributed energy systems, multiple independent energy suppliers (such as solar power generation and wind power generation)
often face conflicts of interest. Game theory provides a theoretical basis for resolving these conflicts and can help various entities
find the optimal energy allocation and pricing strategy in cooperation and competition [22]. This paper achieves coordination
among various energy entities through the Nash equilibrium model, with the goal of maximizing overall social welfare. The
specific formula is as follows:

Maximize U; = P; — (; (10)

U; represents the utility function of energy supplier i, P; is its income, and C; is its cost. Through the Nash equilibrium solution,
this paper can ensure that each supplier operates under the optimal price and resource allocation. Table 1 shows the optimization
results based on the MILP model and game theory method, and compares them with the traditional algorithm.
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Table 1. Optimization results based on the MILP model and game theory method.

optimization algorithm Total enezﬁ/)llvt\:/%r;sumption Cost (10,000 yuan) SL;F;T;ﬁ;nSa?:r(EZ; d System;tibility
Traditional I.inear 1025 80.3 92 85
programming
MILP model 980 75.6 95 88
Game theory model 1000 77.5 93 86
Genetic algorithm 995 78.1 94 87

Figure 1 shows the energy consumption curves when using different optimization algorithms, which clearly shows the advantages
of MILP and game theory models in reducing energy consumption.
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Fig.1 Energy consumption curve when using different optimization algorithms

4.2 Comparison and evaluation of algorithms
4.2.1 Comparison between traditional optimization algorithms and heuristic algorithms

Conventional actuarial solutions, such as linear programming (LP) and nonlinear programming (NLP), have a solid theoretical
foundation for dealing with energy allocation issues. However, in actual complex systems, the calculations are time-consuming
and it is difficult to properly deal with nonlinear constraints in the system. This article compares the performance of linear
programming, genetic algorithms, and particle swarm optimization in dealing with thermal and electrical energy allocation issues
[23]. Table 2 summarizes the efficiency and accuracy of various algorithms in solving thermal energy control issues.
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Table 2. Efficiency and accuracy of different algorithms in solving thermal energy management problems.

algorithms Run time (s) | Deviation from optimal solution (%) | Memory usage (MB) | Applicability
Linear programming 15 0.8 120 High
Genetic algorithm 10 1.2 100 Medium
Particle swarm optimization 8 15 90 Low

Figure 2 shows the comparison of the running time and the optimal solution when using different algorithms in the smart
distribution network. The heuristic algorithm can give a near-optimal solution in a shorter time when dealing with complex
energy scheduling problems, and is suitable for application scenarios with high real-time requirements.
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Fig. 2 Comparison of running time and optimization solution when using different algorithms in smart distribution networks
4.2.2 Performance comparison of distributed control and centralized control methods

Both distributed control systems and centralized control systems are used in smart distribution networks, but the performance
difference between the two is obvious. The advantage of centralized control systems is that they can be optimized globally, but
as the scale of the system expands, centralized control faces problems such as communication bottlenecks and high computational
complexity [24]. Distributed control has better scalability and flexibility through autonomous decision-making in each region.
This paper compares the performance of distributed control and centralized control in smart distribution networks through
simulation. The results are shown in Table 3:
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Table 3. Performance of distributed control and centralized control in smart distribution networks.

control method Scalability Flexibility Computational complexity Communication requirements
Centralized control Low Medium High High
Distributed control High High Medium Low

Figure 3 shows the comparison of system response time between centralized control and distributed control at different scales.
As the scale of the system increases, distributed control shows obvious scalability advantages.

System Response Time for Different Control Strategies
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Fig. 3 Comparison of system response time of centralized control and distributed control at different scales
4.3 Challenges and solutions in algorithm implementation
4.3.1 Real-time performance and algorithm complexity

The optimization scheduling in the smart distribution network needs to be completed in a short time, so the real-time performance
of the algorithm is high. However, the complexity of the optimization problem often leads to too long algorithm calculation time,
which is difficult to meet the real-time requirements. In order to balance real-time and algorithm complexity, this paper adopts
a distributed computing architecture to decompose complex optimization problems into multiple sub-problems, which are
processed in parallel by different nodes, thereby significantly reducing the calculation time. Table 4 shows the comparison of
algorithm execution time under different computing architectures:

Table 4. Comparison of algorithm execution time under different computing architectures.

computing architecture Execution time () Optimization accuracy (%)
Single-node computing 25 98
Distributed computing 10 97.5

Edge computing 8 97
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Figure 4 shows the comparison of execution time between distributed computing and single-node computing. It can be seen that
distributed computing significantly reduces computing time while ensuring high optimization accuracy.

Execution Time for Distributed vs Single Node Computing
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Fig. 4 Comparison of execution time between distributed computing and single-node computing
4.3.2 Balance between data volume and computing performance

With the continuous expansion of smart distribution networks, the amount of real-time data has increased dramatically, which
has brought huge challenges to the computing performance of the algorithm. To address this problem, edge computing and
distributed computing technologies have become solutions. By delegating some computing tasks to edge nodes, it can not only
reduce the computing pressure of the central server, but also reduce communication delays, thereby improving the response
speed of the overall system. In this paper, the response time and data processing capabilities of the system under edge computing
and traditional cloud computing environments are compared in the experiment. The results show that edge computing has
significant performance advantages when processing large amounts of real-time data.

Table 5. System response time and data processing capabilities.

computing model Response time (ms) Data throughput (MB/s)
Cloud computing 150 500
Edge computing 50 700

Through the simulation results (Figure 5), this article can clearly see the advantages of edge computing in big data processing,
especially in scenarios that require low latency and high throughput.
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System Response and Data Processing Capacity

1.0

0.5¢

Response Time (ms)
o
o

-0.5}

-1.0r
—— Edge Computing
—— Cloud Computing

0 2 4 6 8 10
Time

Fig. 5 System response time and data processing capabilities of different algorithms

This paper discusses the application of optimization models and algorithms in smart distribution networks, focusing on the
application of MILP models and energy scheduling optimization methods based on game theory in energy management. By
comparing traditional optimization algorithms and heuristic algorithms, this paper finds that heuristic algorithms have better
performance in dealing with complex problems, especially in scenarios with high real-time requirements. In addition, distributed
control systems have more advantages than centralized control in terms of scalability and flexibility. By introducing distributed
computing and edge computing technologies, the real-time and data processing capabilities in smart distribution networks have
been significantly improved. These optimization methods and technologies provide strong support for the efficient operation of
smart distribution networks and will promote the development of future energy systems.

CONCLUSION

First, the coordinated control of heat regulation and distributed energy in the smart distribution network is crucial to improving
the system's operational efficiency and reliability. The control strategy conceived in this paper adopts a consensus mechanism
to achieve information sharing and coordination among distributed nodes, significantly optimizing the accuracy and response
rate of energy management. Secondly, the constructed heat management and distributed energy coordinated control paradigm
comprehensively considers essential factors such as energy demand fluctuations and energy storage device characteristics to
ensure the practical adaptability of the model. After adopting the constructed control algorithm, the system's heat utilization
efficiency is significantly improved, the total energy consumption is reduced by 15.8%, and the energy supply and transmission
fluctuations are simultaneously reduced, with the amplitude reduced by 12.3%. Furthermore, simulation analysis proves that the
algorithm proposed in this paper exhibits excellent stability and anti-interference in the coordinated control of multiple
distributed energy nodes, and can effectively cope with real-world uncertainties. This shows that the proposed scheme is not
only suitable for the current smart distribution network system, but also lays a technical support for the large-scale access of
distributed energy in the future.
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