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ABSTRACT 

Background: The demand for renewable energy has catapulted wind power to the forefront of sustainable energy options. 

Designing wind turbine blades is a multi-objective optimization problem with conflicting objectives. Optimization methods 

such as the weighted sum or the goal programming method fail in this context of conflicting objectives: minimum weight, 

cost, and strength. The study discusses the integration of artificial intelligence algorithms with conventional design 

approaches for optimal blades of a 1.5MW DFIG wind turbine. Advanced computational methods are used to integrate 

aerodynamic efficiency, structural durability, and economic feasibility. 

Methods: This paper uses a broad meta-analytical approach with the integration of finite element analysis (FEA)and 

artificial intelligence optimization algorithms. This paper will consider three critical optimization techniques: genetic 

algorithms (GA), particle swarm optimization (PSO), and gray wolf optimization (GWO). The blade performance will be 

considered for various operating conditions, including aerodynamic efficiency, structural integrity, and cost. This analysis 

will be performed based on IEC 61400 standards and new frontiers of innovative design optimization techniques. 

Results: Blade design optimization showed considerable improvement in using AI-driven approaches. For the GWO 

algorithm, better convergence is around 20% faster than the one obtained with traditional methods. This optimized design 

reduces weight by 8% and improves structural durability by an increase of 25% in fatigue life. For combined blade design, 

the maximum value of the power coefficient is 0.27, thus showing considerable improvement compared to the conventional 

designs. Besides, innovative material selection and design optimization could reduce the cost index by 17.6%. 

Conclusion: These results highlight that incorporating AI algorithms with traditional methods has significantly enhanced 

wind turbine blade optimization. This methodology was developed in such a way that it achieved a balanced solution for 

multi-objective designs, including computational efficiency. This study stresses industrial feasibility by using advanced 

optimization techniques for real applications, thus demonstrating their impact on the future of wind energy technological 

development. 

Keywords: Wind turbine optimization, artificial intelligence, DFIG, blade design, computational efficiency, structural 

analysis, renewable energy, multi-objective optimization 

INTRODUCTION 

The increasing global demand for sustainable energy solutions has positioned wind power as one of the most promising 

renewable energy sources. DFIG-based systems are receiving more attention from all wind energy technologies because of 

their high efficiency, control ability, and tolerance to varying wind conditions [1]. Wind turbine blades play a significant 

role in the efficient functioning of wind energy conversion systems (WECS), and their design and optimization are critical 

in energy acquisition and stress concerns. Certain parameters must be optimized for a 1.5MW DFIG wind turbine to meet 

optimal blade design and tuning; these objectives are conflicting and include weight, cost, and durability under various 

conditions [2]. 

Wind turbine blades experience a combination of aerodynamic and structural loading, which calls for a higher order of 

optimizations to predict efficient and economical designs. Despite their applicability to accomplished individual 

objectives, conventional optimization methods are inadequate when more than one objective is to be met, and they directly 

conflict with each other [3]. This has prompted using meta-models, which incorporate multiple objectives when solving a 

design problem. But, nowadays, with the help of artificial intelligence (AI) algorithms like genetic algorithms (GA), 

particle swarm optimization (PSO), and gray wolf optimization (GWO), vast solution space can be efficiently searched for 

Pareto optimality balancing the trade-offs between different objectives [4]. 

Remarkable efforts have been made in the application of intelligent algorithms for the optimization of wind turbine blades. 

These algorithms provide practical techniques for solving non-sequential and multi-parametric design problems without 

high computational 
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expenses. For example, GAs have been widely applied in designing and selecting blade geometry, material  

 

choice, and structural arrangements [4]. In the same way, PSO and GWO are better at solving complex optimization 

problems by implementing natural social phenomena [5]. If integrated into the design process, such techniques will  

considerably improve blade performance measures: efficiency power, durability strength, and production cost. 

This study focuses on multi-objective optimization and using an intelligent algorithm in designing a blade for a 1.5MW 

DFIG wind turbine. Compared with traditional methodologies, this study uses enhanced mathematical models to design 

the form of the blade, the composition of materials, and overall structural strength all at once. They defined the optimum 

design's fiber orientation, lamina thickness, and aerodynamic profiles. At the same time, it has to account for the 

fluctuating wind speed and, thus, its fatigue loads  [6]. An additional newness of this work is introducing a material cost 

indexing method that permits the identification of reasonable solutions when considering material costs. 

This work integrates FEA with AI-driven optimization, assuring that the results obtained for proposed geometries can pass 

realistic validation concerning the structure under such conditions. In the proposed work, attempts are made to present the 

challenges to overcome profiling in a wind turbine blade with issues regarding minimal weight with maximum structural 

solidity within a realistic computation time with adherence to the IEC 61400 standard [7]. The results of this study hold 

great implicit relevance to global wind energy systems enhancement possibilities, both on onshore and offshore wind 

farms, where efficiency and cost are significant focuses. 

METHODOLOGY 

Wind turbine blade design improvements for 1.5MW DFIG include aerodynamics, mechanical and electrical stresses, and 

economic feasibility. Attaining these objectives employs a systematic approach comprising parameterization, multi-

objective optimization, and intelligent algorithm integration. 

Blade Design and Parameterization 

A blade design and parameterization step is incorporated into the proposed optimization process since blade geometry 

directly impacts the flow field of the wind turbine and, as such, must be optimized alongside the controller. The wind 

turbine blade design uses aerodynamics, structure, and material to design blades for a 1.5MW DFIG [2]. This research 

assesses blade designs with a data-collection systematic approach that combines information from various studies to 

identify the crucial parameters that affect blade capability and economic feasibility. The overview of aspects regarding the 

geometric features, material choices, and loading conditions helps evaluate the design compromises. 

Geometric Parameters 

Geometry features play a determining role in deciding the response of turbine blades in terms of aerodynamics and 

mechanical strength. Some of those parameters are the blade's length, the blade's chord length, and the blade's airfoil 

shape. The airfoil shape, particularly in the NACA series, defines the lift-to-drag ratio, which is essential to maximize 

energy capture [8]. Furthermore, thickness distribution and taper ratio also affect the structural behavior of the blade 

subjected to aerodynamic and centrifugal loads [9]. As a result of integrating data from prior works, this paper can outline 

ideal geometric layouts that best perform while being easily producible. 

Material Selection 

The material used is decisive for achieving low blade weight but reasonable stiffness. Specific types of useful composite 

materials use carbon and glass fibers. They are very durable and have high strength by weight [10]. Consequently, this 

meta-analysis assesses different laminate stacking sequences, fiber orientation, and volume fractions to identify the ideal 

configurations for certain design requirements. In addition, the study includes an approximation of cost by discussing 

relationships between the characteristics of materials and cost limitations, applying the cost index method to standardize 

the cost of materials for different manufacturing conditions. 

Loading Conditions 

Wind turbine blades are subjected to different load conditions, including aerodynamic, centrifugal, and gravitational. 

These forces change with wind speed, rotor dynamics, and states of operation in the case of startups, shutdowns, or 

emergency stops [11]. 
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The paper integrates findings from existing research into load distributions across the sections of a blade, underlining the 

crucial contribution of inertia loads to structural deformation. This section will also consider the analysis based on 

boundary details developed under cyclic stresses common in wind turbine operations. 

 

Optimization Model 

Objective Functions 

Among others, the main goals of its optimization include a minimum blade weight and cost index, elaborated with criteria 

on structural safety and aerodynamics performances. Significant constraints for maintaining structural safety concern 

maximal acceptable stress and deformations, whereas the constraints within the field of control aim to catch energy 

adequately in a broad wind spectrum [12]. Using this meta-analytical data, a multi-objective model that systematically 

incorporates and resolves these design variables is developed. 

Computational Framework 

Advanced artificial intelligence algorithms, including genetic algorithms, particle swarm optimization, and gray wolf 

optimization, are used for the optimization process. Such methods are highly feasible for multi-objective optimization 

problems where nonlinear and interrelated variables are considered [5]. The finite element analysis study will support the 

proposed computational workflow to validate the structural performance to implement the algorithmic procedure. The 

empirical data and computational simulation will ensure a hybrid and effective optimization process. 

Cost Indexing and Normalization 

This study also introduces a cost indexing methodology that normalizes the expenses among currencies and market 

conditions to facilitate a consistent evaluation of material costs. Fair comparison among design alternatives enables the 

choice of economically feasible solutions. The factors of material availability, complexity of manufacturing, and long-term 

maintenance requirements ensure the comprehensiveness of economic impacts through the cost index. 

Intelligent Algorithm Integration 

Intelligent algorithms extend the optimization model through improved features to effectively search and survey the design 

solution space. The use of these metaheuristic optimization algorithms is informed by the efficiency of genetic algorithms 

in managing discrete and continuous variables and the speed of convergence of both PSO and GWO. The meta-analysis 

presents the previous comparisons of these algorithms, revealing the optimal parameters for setting and various combined 

methods. A series of flow charts indicating the optimization process demonstrate how aerodynamic and structural goals are 

interlinked and how the focus on particular aspects is balanced against the potential weaknesses of such an approach. 

In essence, the meta-analytic technique is incorporated with some of the most advanced and efficient computational tools 

that can assist in finding the optimum blade design of the 1.5MW DFIG wind turbine. The analysis formulates a practical 

framework to achieve enhanced bladed disk performance and cost optimization by considering key parameters, intelligent 

algorithm integration, and cost factors. 

RESULTS AND DISCUSSION 

Simulation Setup 

The developed simulation framework integrates finite element analysis (FEA) and artificial intelligence-based 

optimization algorithms and evaluates structural and aerodynamic performances in 1.5MW DFIG wind turbine blades. The 

optimization model uses parameters synthesized from meta-analytic data on the geometry of blades, material properties, 

and operational load conditions. For this, algorithmic implementation was performed on MATLAB, and structural 

validation was done in static and fatigue loading conditions using ANSYS. Simulation input and constraints are 

highlighted in Table 1. 

Table 1: Simulation Parameters and Constraints 

Parameter Value/Range Description 

Blade length 45 m Total length of the turbine blade 
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Airfoil profile NACA 64-618 Selected based on aerodynamic efficiency 

Material Carbon/Epoxy, Glass/Epoxy High strength-to-weight ratio composites 

Load conditions Operational, extreme wind speeds Static and dynamic load scenarios 

Optimization algorithms GA, PSO, GWO Multi-objective algorithms tested 

Objectives Weight, cost index Minimize mass and cost while ensuring safety 

 

The blade was modeled as a laminate composite structure with multiple laminae, each characterized by distinct fiber 

orientations. Aerodynamic loads were derived using empirical equations based on wind speed distributions and airfoil lift-

to-drag ratios. Structural safety constraints were imposed using IEC 61400 standards, and the inertia load was computed 

for rotational speeds of 15 rpm to 25 rpm. 

RESULTS ANALYSIS 

Aerodynamic Performance 

The optimized blades were then analyzed for their aerodynamic performance by calculating the lift and drag coefficients of 

the selected NACA 64-618 profile. Figure 1 illustrates the variation of the lift-to-drag ratio with the angle of attack. The 

study conducted by Osei et al. recorded the highest lift-to-drag ratio of 170 at a Re of 500,000 [13]. Osei et al. indicated 

aerodynamic efficiency, particularly at low to medium wind speeds. 

Figure 1: Lift-to-Drag Ratio for NACA 64-618 Airfoil 

The blade's performance was further validated by comparing its power coefficient (Cp) against benchmark data from 

existing literature. The results in Table 2 demonstrate that the optimized design closely matches or exceeds the 

performance of reference designs.  

Table 2: Comparison of Power Coefficients (Cp) 

Wind Speed (m/s) Reference Cp Optimized Cp 

8 0.45 0.47 

10 0.48 0.50 

12 0.50 0.51 

14 0.51 0.51 
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Further analysis of the comparison of the performance of two different blade types - conventional and combined blades - 

in terms of their conventional power output across various tip speed ratios (TSR) revealed interesting findings. The power 

output of both blade designs increases when TSR rises but hits a peak limit at an optimal TSR value, followed by a 

decrease in power output as TSR continues increasing. The combined blade demonstrates better performance than its 

conventional blades (Figure 2). Both blades maximize their output power at 0.27 and 0.24, respectively, yet the combined 

design enhances performance. The performance of both blades starts deteriorating when TSR exceeds 0.8, and their power 

generation drops  

 

sharply when TSR reaches 1.4.  

Figure 2: Comparison coefficient of power (Cp) vs. TSR, conventional and combined blades

Structural Analysis 

The optimized blades were analyzed for structural integrity in static and fatigue loading conditions. FEA simulations 

showed that the design of the blade satisfied all the safety constraints, with stress and deformation values being well below 

critical limits. Figure 3 shows the blade's distribution of von Mises stresses at maximum operational load. 

Figure 3: Von Mises Stress Distribution

 

The maximum von Mises stress was observed near the blade root, where loads are concentrated. The stress value of 95 

MPa was significantly lower than the material's ultimate tensile strength (UTS) of 250 MPa, ensuring a high safety factor. 

Table 3 summarizes the structural analysis results. 

Table 3. Structural Analysis Results 
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Maximum von Mises Stress 95 MPa 2.63 

Maximum Deflection 0.75 m - 

Factor of Safety (Static) - >2.5 

 

 

The fatigue analysis revealed that the blade design could withstand over 10 million load cycles without failure, indicating 

excellent durability. The optimized fiber orientations contributed significantly to this performance by reducing stress 

concentrations and enhancing load distribution. 

Optimization Results 

The performance of the three optimization algorithms—genetic algorithm (GA), particle swarm optimization (PSO), and 

gray wolf optimization (GWO)—was evaluated based on convergence speed, computational efficiency, and solution 

quality. GWO demonstrated the fastest convergence and highest diversity in solutions, followed by PSO and GA. Table 4 

provides a quantitative comparison of the algorithms. 

Table 4. Algorithm Performance Metrics 

Algorithm Convergence Time (s) Best weight (kg) Best Cost Index 

GA 850 1450 80 

PSO 720 1400 75 

GWO 680 1380 70 

 

 

The best solution obtained using GWO achieved a blade weight of 1380 kg and a cost index of 70, significantly improving 

over traditional designs. 

Comparison with Benchmark Designs 

To analyze the optimized design further, comparisons with benchmark blade designs from existing studies are made to 

identify performance gains. The summary is provided in Table 5. 

Table 5. Comparison with Benchmark Designs 

Parameter Benchmark Design Optimized Design 

Weight (kg) 1500 1380 

Cost Index 85 70 

Lift-to-Drag Ratio 120 130 

Fatigue Life (Cycles) 8 million 10 million 

 

 

The optimized blade design was shown to perform better than the other three in all of the considered criteria, including 

weight and cost index reductions, improvement in aerodynamic efficiency, and an increase in fatigue life. 

DISCUSSION 

The result of this meta-analysis indicates savvy exploitation into the full potential by combining AI algorithms with 

traditional methods to optimize performance for wind turbines. The study shows key information about how AI helps 
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maximize the turbine output, hence saving computations to ensure applicability in the real world. 

The optimized blade design significantly improved most of the metrics related to wind turbine performance. The NACA 

64-618 airfoil profile is more efficient than those studied by Castorrini et al. (14). The results agree with Osei et al., who 

state that the lift-to-drag ratio of 170 was achieved for the NACA 64-618 airfoil profile at a Reynolds number of 500,000 

[13]. The optimized design showed a better performance than the reference designs at a low wind speed of 8-10 m/s during 

the measurement of Cp performance [15]. The study on low wind efficiency further established these results as one of the 

major factors improving the overall energy capture in moderate wind resource areas by Adeyeye et al. [16]. 

Analysis of modern AI optimization methods proves they are more efficient during calculations. The Gray Wolf 

Optimization outperformed its peers by converging faster than GA and PSO. The efficiency improvements match earlier 

research by Rezaei et al., which showed comparable results when using GWO to optimize wind turbines [17]. Our 

optimized design lowers the weight from 1500 kg to 1380 kg by 8% while making the structure stronger by increasing the 

fatigue life by 25% to reach 10 million cycles. 

The computational framework's efficiency in handling multi-objective optimization demonstrates practical advantages for  

 

industrial implementation. The reduced convergence time of 680 seconds for GWO represents an improvement over 

traditional optimization methods. This efficiency gain, coupled with the 17.6% reduction in cost index, suggests significant 

potential for practical industrial applications, particularly in rapid prototyping and design iteration phases.  

However, several limitations and areas for future research should be noted. While the findings prove speed upgrades and 

better performance, analyzing how materials impact production methods remains essential. The sharp performance 

deterioration observed at tip speed ratios above 1.4 warrants additional research. This will particularly aid in understanding 

as the study by Ali and Jang found similar results [18]. These results show similar limitations in the studies' optimization.  

The results also highlight the importance of balanced optimization approaches in wind turbine design. The combination of 

wind dynamics testing, structural engineering, and computational modeling through AI optimization fits well with modern 

renewable energy advancements, as Wang et al. document [19]. Future work should expand the use of these optimization 

techniques for different turbine types along with offshore wind projects, which need precise design control and quick 

processing capabilities. 

CONCLUSION 

This meta-analysis has demonstrated the effectiveness of integrating artificial intelligence algorithms with traditional 

design approaches for optimizing 1.5MW DFIG wind turbine blades. The study has successfully addressed complex 

problems in wind turbine design involving multiple competing objectives such as aerodynamic efficiency, structural 

integrity, and economic feasibility. With the help of advanced optimization algorithms, specifically the Gray Wolf 

Optimization method, this resulted in substantial improvements in design outcomes and computational efficiency. The 

optimized blade design achieved an 8% reduction in weight while simultaneously improving structural durability and 

aerodynamic performance. An increase in the power coefficient to 0.27 for the combined blade design indicates the 

possible development toward higher efficiency in wind turbines, especially in the low range of wind velocities where any 

increase in efficiency counts most toward overall energy capture. 

The innovative approach to cost indexing and material selection within the study has shown that performance 

improvements do not necessarily have to come at the expense of economic viability. The 17.6% reduction in cost index, 

improved structural performance, and increased fatigue life suggest that overall cost-effectiveness in wind energy systems 

can be significantly improved. This does have particular relevance to the growing global wind energy sector, which is still 

poised at the nexus between performance and cost. 

The accomplishment of finite element analysis integrated with artificial intelligence-driven algorithms for optimization 

makes for a substantial backbone for any subsequent undertaking in wind turbine design. GWO has been instrumental in 

bringing gains in computational efficiencies. For example, time to convergence can be reduced to less than 40% compared 

with a direct nonlinear numerical search technique, which evidences an industrial feasibility scenario while enabling the 

implementation of this advanced optimization algorithm to typical industrial applications. 

Looking forward, this study opens up promising avenues for further research. The methodology developed can be 
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extended toward optimizing larger turbine sizes, where the design requirements related to more difficult offshore 

applications are especially demanding. Also, the framework established for multi-objective optimization may again be 

used with state-of-the-art advancements in design materials and manufacturing techniques that can bear further fruit for 

improvements in turbine performance and cost-effectiveness. 

The present study emphasized how integrating AI algorithms within traditional design methods can lead to tremendous 

improvements in wind turbine blade designs, both in performance and economic viability. The results provide quite a solid 

foundational contribution to new developments in wind energy technology as scaling up is required to fulfill the growing 

global demand for renewable energy solutions. 
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