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Abstract:  

An e-commerce logistics park, as a hub for e-commerce logistics, possesses the traits of high task volume and intensive package 

delivery. It is inefficient and dangerous to rely solely on manual work. Thus, there is some practical significance and benefit in 

figuring out how to implement cutting-edge delivery techniques to boost the delivery effectiveness of e-commerce logistics 

parks. This study combined the features of the e-commerce logistics and distribution environment, identified and eliminated 

the three robot types that are currently suitable for intelligent distribution, built an evaluation index system to assess the robot 

model selection scheme appropriate for e-commerce logistics and distribution. To assess the robot model selection strategy, we 

built an entropy weight-material element expansion model and computed the weighted correlation degree and proximity to 

various grades of the three robot kinds and five assessment grades, as well as the degree of proximity with various grades, 

determined the distribution robot model. Following example verification, the research presented in this paper can successfully 

conduct a reasonable and scientific evaluation of the distribution robot selection and can offer specific references for the more 

thorough decision-making process of robot selection for logistics and distribution in e-commerce parks. 

Keywords: delivery robot, membrane material; entropy weighted-fuzzy element-to-set operators model, selection evaluation 

INTRODUCTION 

The demand for online shopping in China is growing steadily due to the country's thriving e-commerce industry and the country's 

citizens' improving quality of life year after year. This has resulted in rapid sales growth and high profits for many e-commerce 

businesses. The entire chain of "third profit source" logistics needs to be further improved in order to boost enterprise income 

and lower distribution costs if the cost reduction and efficiency of the entire logistics system are to be maintained based on 

maintaining the original model at this point in the steady and rapid growth of social retail sales [1]. Additionally, people's 

expectations for their online buying experiences are steadily rising. The main challenge facing the entire e-commerce and 

logistics sector is how to deliver goods to customers as fast and efficiently as possible while achieving low carbon emissions and 

green transportation while accommodating the needs of numerous customers with varying arrival times [2]. 

The burden for delivery manuals rises along with the gap in delivery workers due to the increasing geometric growth trend of 

the quantity of express delivery orders. As the amount of physical delivery work increases, delivery staff may get more exhausted, 

and there may be more traffic accidents or collisions during the distribution process, putting their safety at risk. The increased 

workload also results in higher labor costs, which raises the financial pressure on rapid delivery businesses. As a result, nations 

are creating unmanned sorting, handling, and distribution companies. Mechanized automation and intelligent logistics 

distribution systems are especially crucial for creating a low-cost, safe, quick, and efficient system [3]. Numerous domestic and 

international e-commerce platforms have started to focus on studying autonomous robot delivery. Amazon started testing the 

delivery robot Scout across the United States in 2019. China Post has deployed unmanned robots across more than 300 kilometers 

in various locations throughout China. Jingdong has also made significant efforts to study unmanned robots. Beijing launched 

China's first fleet of unmanned delivery cars in May 2021, with the vehicle code "JD0001". The autonomous delivery robot from 

Suning is capable of delivering packages. The first unmanned delivery robot in China that can communicate with elevators is 

called "Wolong No.1". Robots or unmanned vehicles for distribution have been considered as a viable solution to future express 

delivery problems [4]. 

As the idea of unmanned distribution gains traction, unmanned distribution technology advances daily, and research on e-

commerce logistics distribution using distribution robots and unmanned logistics vehicles in an e-commerce logistics park has 

steadily gained popularity. Unmanned logistics distribution can be separated into two categories based on the distribution 

environment: indoor logistics distribution and outdoor logistics distribution. While the latter has a more secure and enclosed 

distribution environment and typically uses mobile robots to complete duties, the former primarily uses unmanned vehicles and 

unmanned distribution robots to do distribution activities in an open environment. Major domestic and international logistics 

companies and e-commerce have long recognized the market's hot spot and the value of autonomous robot distribution, and they 

have been conducting extensive research in related disciplines [5]. The real data and experience of logistical situations may be 
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perfectly applied to product research and development because of the robust use of customers and terminals. It has conducted 

several unmanned distribution research and development and application mode scenarios and has been at the forefront of 

unmanned distribution technology. With a number of machine interaction features, such as the implementation of the popular 

interactive features of scanning code and scanning face and the cloud interaction mode of audio lighting, Ali Cainiao Logistics' 

unmanned delivery vehicle has been in the public eye since 2018. In addition to Alibaba, Meituan, Jingdong, and other giants 

that occupy the daily logistics e-commerce, the new generation of start-up technology e-commerce companies, such as White 

Rhino and Neolithic, are also vying for the vacancies and hot spots in the field of unmanned distribution, and the overall business 

model is generally the overall solution of "vehicle + algorithm" [6,7].With the algorithm's continuous improvement, unmanned 

distribution occupies a big and often used space and market. In addition to more companies focused on unmanned delivery, the 

technology is rapidly advancing. Scholars mostly focus on optimizing the path distribution of unmanned vehicles [8,9]. 

The selection of autonomous distribution vehicles is also a critical issue for the entire e-commerce logistics park, especially 

given the present market for more unmanned vehicles and intelligent robots. The investment in unmanned vehicles and intelligent 

robots is often characterized by a great quantity and a variety of forms. The selection of unmanned vehicles or intelligent robots 

can effectively evaluate the economic performance of unmanned distribution equipment [10], as well as give a more green and 

convenient operation and maintenance evaluation in terms of low-carbon [11]. A limited body of literature has investigated 

unmanned distribution devices based on the minimum regret value hypothesis [12] and overall distribution group performance, 

with some success. Some researchers developed multi-criteria models to evaluate unmanned vehicles in an unpredictable 

environment [13] and carried out UAV selection judgments. Morteza combined with time window [14] and Matthieu combined 

with battery performance investigated UAV selection [15], and the relevant research in the aforementioned literature have made 

some progress. However, selecting and evaluating robots in e-commerce parks remains unusual. The primary study focus of this 

work is the selection of robots in e-commerce parks. The goal of this study is to first examine the existing condition and 

characteristics of the e-commerce logistics park, and then to develop the index system by screening relevant variables. Finally, 

the entropy weight - matter element extension model is used to assess the types of robots best suited for the park's logistics. 

E-COMMERCE LOGISTICS PARK DISTRIBUTION ROBOT SELECTION EVALUATION INDEX SYSTEM 

CONSTRUCTION  

E-commerce park logistics distribution differs from other types of logistics distribution due to the park's distinct setting and 

consumer groupings. To accommodate the sophisticated logistics distribution activities, the e-commerce park is normally 

spacious, with an easy-to-identify layout and a reasonably tranquil atmosphere. Furthermore, the park's numerous facilities are 

typically built in separate regions. In some areas, the building density is rather high, and the road conditions vary. As a result, 

park distribution robots must meet fundamental characteristics such as low noise, small size, and stable driving. In addition to 

the fundamental needs listed above, given the scarcity of robot charging stations in the park and the difficulty of solving the 

charging station adaption problem, a robot equipped with charge stations is more convenient and ideal for e-commerce. Based 

on the preceding investigation, typical types of distribution robots on the market were gathered and examined, and three types 

were chosen for e-commerce parks: Type A, Type B, and Type C. These three types of robots produce the least amount of 

operating noise of any category, and their noise level is comparable to that of a normally calm environment. Additionally, the 

robot's size may accommodate expedited delivery and is smaller than the maximum size of traffic on the road. Its broad ground 

clearance makes it appropriate for a variety of road conditions and offers good driving stability. Using the entropy weight-matter 

element extension model, this chapter evaluates the robot model selection scheme for distribution path optimization in the text 

that follows. It does this by choosing the best robot model for distribution in the e-commerce park from the three types of robots 

mentioned above, combining the current state of express delivery, road conditions, population density, and delivery time 

collected from school surveys. 

The evaluation index system for selecting robot models in the park is made up of a number of variables that might reflect the 

characteristics of the park's distribution robots. These indicators describe the parameters of the three types of distribution robots 

and serve as the foundation for future evaluations. This work develops the assessment index system using the following 

principles: 

(1) Evaluation indicators should be combined with the actual situation of e-commerce park distribution 

When creating the evaluation index system for selecting robot models in the park, the characteristics of the park's distribution 

are integrated with the many parameter indicators of intelligent distribution robots. The system uses a minimal number of 

accurate indications to reflect the properties of intelligent distribution robots in a systematic and complete manner, eliminating 

the complication created by the inclusion of irrelevant indicators.  
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(2) Principle of availability 

When developing an index system for the park's robot model selection, the availability and feasibility of the indicators must also 

be considered. The simplicity of getting indicator data, high precision, and acceptability of indicators as evaluation criteria are 

critical foundations for improving evaluation accuracy. If data for indicators that are difficult to get are missing, their reference 

value will be considerably lowered, which is not helpful to the progression of following evaluations. 

(3) Principle of objective scientificity 

When developing an index system, the scientificity and objectivity of the indicator values are critical. The quantitative study of 

evaluation items using objective and real indicator values lowers the impact of subjectivity on evaluation findings. That is, in the 

evaluation index system for the selection of robot models, the majority of the indicator characteristics are chosen as quantitative 

indicators, ensuring the objectivity of the assessment results as well as the application and economy of the chosen robots. 

The research object of this paper is: Among the common types of distribution robots collected and analyzed on the market, Class 

A, Class B, and Class C robots have the following characteristics: being relatively quiet in noise level, meeting the size 

requirements for carrying express delivery, being smaller than the maximum road traffic size, having a large ground clearance, 

being suitable for various road conditions, and having strong driving stability. These robots are ideal for the distribution 

environment of e-commerce parks. 

Indicators such as rated load capacity, battery capacity, battery mileage consumption, maximum endurance mileage, overall 

machine weight, size, maximum speed, minimum passing width, minimum turning radius, minimum ground clearance, noise, 

movement error, collision avoidance safety, auxiliary interaction function, charging pile adaptability, charging rate, and artificial 

intervention convenience are the main ones chosen in this paper based on the previously mentioned goals. The following are the 

detailed descriptions: 

1) Rated load capacity: The typical maximum load capacity, expressed in kilograms, that the park distribution robot is capable 

of carrying when distributing. It is a favorable indicator since the greater it is, the more efficiently the park distributes its resources. 

2) Battery capacity: Battery capacity: The amount of electrical charge, expressed in Ah, that the park distribution robot's 

integrated battery can hold. It is a favorable indicator since the higher it is, the longer the distribution period in the park. 

3) Battery mileage consumption: The number of miles the park distribution robot can travel per kWh of battery power consumed 

during the distribution process, measured in km/kWh. The higher this indicator, the longer the distance the robot can travel 

without charging in the park, making it a positive indicator. 

4) Maximum endurance mileage: The longest distance the park distribution robot can travel on a single charge with a full battery 

during the distribution process, measured in km. The greater the maximum endurance mileage, the longer the robot can continue 

to distribute in the park, making it a positive indicator. 

5) Overall machine weight: The total weight of the park distribution robot’s body. The heavier the overall machine weight, the 

less convenient it may be during the distribution process. Additionally, in the event of unexpected situations during distribution, 

the heavier weight may lead to more severe accidents and injuries, reducing safety, making it a negative indicator. 

6) Size: The dimensions of the park distribution robot’s body, including its length, width, and height, with the total volume 

measured in m^3. The larger the length or width of the park distribution robot’s body, the higher the requirements for the 

distribution environment, and the more prone to congestion, reducing body flexibility. The higher the height, the worse the safety 

during distribution, making it a negative indicator. 

7) Maximum speed: The highest speed that the park distribution robot can reach during the distribution process, measured in 

km/h. The higher the maximum speed, the higher the efficiency during the park distribution process, making it a positive indicator. 

8) Minimum passing width: The smallest width that the park distribution robot can pass through during the distribution process, 

measured in mm. The larger the minimum passing width, the narrower the width the robot can pass through during distribution, 

resulting in higher requirements for the roads, fewer navigable paths, and fewer deliverable customer points, making it a negative 

indicator. 

9) Minimum turning radius: The radius from the outer steering wheel to the center of the turning circle when the park distribution 

robot is traveling at its minimum stable speed during the distribution process, measured in meters. The larger the minimum 
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turning radius, the more space the robot requires to turn, reducing the flexibility of the park distribution robot, making it a 

negative indicator. 

10) Minimum ground clearance: The height from the lowest point of the chassis to the ground when the park distribution robot 

is fully loaded during distribution, measured in mm. The larger the minimum ground clearance, the lower the requirements for 

the roads during distribution, making the distribution process safer, making it a positive indicator. 

11) Noise: The sound level produced by the park distribution robot during the distribution process, measured in decibels. The 

louder the noise, the greater the impact on pedestrians nearby and customers in buildings, and the greater the disturbance to the 

park environment, making it a negative indicator. 

12) Movement error: The discrepancy between the set position and the actual position of the park distribution robot during the 

distribution and interaction process. The larger the movement error, the higher the error rate of the robot during distribution, the 

worse the distribution efficiency, and the lower the task completion perfection, making it a negative indicator. 

13) Collision avoidance safety: The system included in the park distribution robot’s body to prevent accidents during distribution, 

generally including remote control anti-collision design, collision sensor emergency stop system, and VUC with heartbeat 

protection, temperature protection, and current protection. Converted into a percentage in the indicator evaluation, the higher the 

collision avoidance safety, the safer the park distribution robot during distribution, making it a positive indicator. 

14) Auxiliary interaction function: The interactive functions of the park distribution robot with customers and the distribution 

service platform during the distribution process, including audio and light prompts upon arrival, cloud recording of walking 

paths, and remote shouting functions, measured in units. The higher the auxiliary interaction functions, the more interactive 

functions provided to customers, and the higher the customer satisfaction, making it a positive indicator. 

Table 1. Evaluation Index System for Park Robot Model Selection 

Indicator Layer Unit Trend 

Rated Load Capacity
1A  Kilograms (kg) Positive 

Battery Capacity
2A  Ampere-hours (Ah) Positive 

Battery Mileage Consumption
3A  Kilometers per kilowatt-hour (km/kWh) Positive 

Maximum Endurance Mileage
4A  Kilometers (km) Positive 

Overall Machine Weight
5A  Kilograms (kg) Negative 

Size
6A  Cubic meters (m³) Negative 

Maximum Speed
7A  Kilometers per hour (km/h) Positive 

Minimum Passing Width
8A  Millimeters (mm) Negative 

Minimum Turning Radius
9A  Meters (m) Negative 

Minimum Ground Clearance
10A  Millimeters (mm) Positive 

Noise
11A  Decibels (dB) Negative 

Movement Error
12A  Centimeters (cm) Negative 

Collision Safety
13A  Percentage (%) Positive 

Auxiliary Interaction Function
14A  Count Positive 

Charging Pile Adaptability
15A  Percentage (%) Positive 

Charging Duration
16A  Hours (h) Negative 

Artificial Intervention Convenience
17A  Percentage (%) Positive 

15) Charging pile adaptability: The degree of compatibility between the park distribution robot and the charging pile during 

charging, measured in %. The higher the adaptability, the more convenient the charging process for the distribution robot, and 

the higher the charging efficiency, which is beneficial for the maintenance of the robot's body, making it a positive indicator. 

16) Charging duration: The longest time taken for the park distribution robot to recharge after completing a delivery task, 

measured in hours. The longer the charging duration, the longer the maximum downtime of the park distribution robot, making 

it a negative indicator. 
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17) Convenience of manual intervention: In the distribution process of the park distribution robot, the convenience of backstage 

manual intervention, the virtual road network to avoid straying, the windows client remote control, the APP mobile phone client 

remote control and other functions, the unit is %, are positive indicators. 

The aforementioned indicators, covering aspects such as the intelligent robot's endurance, operational metrics, load capacity, and 

convenience of use, construct the evaluation index system for the selection of robot models in the park, as shown in Table 1. 

CONSTRUCTION OF ENTROPY WEIGHT MATTER ELEMENT EXTENSION EVALUATION MODEL 

The matter-element extension model and the entropy weight approach are combined in the entropy weight matter-element 

extension model. This model primarily uses the entropy weight method to calculate the weight of each index in the index system, 

the matter-element extension model to evaluate the evaluation object, and the model selection scheme to determine the 

distribution robot's model in the e-commerce park. An entropy weight matrix is created using the index values of each object to 

be evaluated in the entropy weight technique, which is an objective way to determine weights. Weight calibration, which reflects 

the relative relevance of several indicators, is accomplished through quantitative computation. This method uses the variability 

of indicator data to assign weights to indicators [16], without relying on expert experience, and is widely used in weight 

determination in multiple fields [17]. The approach involves building a judgment matrix, normalizing it to find the indicators' 

information entropy, and then using that information to calculate the indicators' entropy weight [18]. The matter-element 

extension model was proposed by Cai Wen, a Chinese scholar. This model combines qualitative and quantitative methods. 

Through a series of quantitative processing and calculation of the indicator value, it determines the correlation degree and 

distance between the object to be evaluated and each grade, finally gives the closeness of the object to be evaluated, and 

determines the qualitative grade [19,20].The flowchart of the model implementation is shown in Figure 1 [21]: 

Index System Index Value

Matter element 

matrix to be tested

Classical domain 

matter element matrix

Joint matter element 

matrix

U Normalization

Processing

Data 

Standardization

Data

Normalization
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Entropy
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Degree
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Figure 1. Implementation flowchart of entropy weight matter element extension model 

Determine the classical domain, nodal domain, and test element 

Assuming that the object to be evaluated N  has a feature set A ,  1 1, , nA A A A= , and the numerical set corresponding to 

the feature set A  is V ,  1 2, , , nV V V V= , then the ordered triplet ( )  , ,R N A V=  composed of N , A  and V  is the basic 

element of the object to be evaluated, abbreviated as matter element. The representation of the matter element matrix is as 

follows: the classical domain matter element matrix, the nodal domain matter element matrix, and the object element matrix to 

be tested will be expanded based on this equation.  

1 1

2 2
( , , )     

n n

A VN

A V
R N A V

A V

 
 
 = =
  
 
 

                                                             (1) 
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(1) Determine the classical domain matter element matrix 

The classical domain element matrix is mainly composed of the evaluation level of the object to be evaluated 

( 1,2, , )jN j m= , the feature set of the object to be evaluated A , and the range of feature values of the feature set A  at each 

evaluation level j , ( ),j j j jV V a b=  . The representation of the classical domain element matrix is shown in the following 

equation.  

1 1, 11 1

2 2, 22 2

,

( , , )              1,2, ,

j j jj j

j j j

j j j

jn jn jnn n

V a bA AN N

V a bA A
R N A V j m

V a bA A

    
   

    = = = =
   
          

               (2) 

Among them, jR  is the classical domain element matrix of the first j  evaluation level, and ,j ja b   is the range of values of 

the feature set A  at the first j  evaluation level.  

(2) Determine the nodal element matrix 

The nodal element matrix is the union of the classical nodal element matrix, consisting of the object to be evaluated N , the 

feature set A  and the overall value range of the feature set quantities 
NV ,where 

1 2N mV V V V=     .The representation 

of the nodal element matrix is shown in the following equation.  

1, 11 1 1

2, 22 2 2

,

( , , )          

N NN j

N NN

N Ni

Nn Nnn Nn n

a bA V AN N

a bA V A
R N A V

a bA V A

   
  

   = = =
     
        

                              (3) 

Among them, NR  is the nodal element matrix, and ,N Na b   is the overall range of values for the feature set A .  

(3) Determine the matrix of the test element to be tested 

Composed of the object to be evaluated N , the feature set A , and the values of different objects to be evaluated V , denoted as 

R0, its specific representation is shown in the following equation.  

1 10

2 2

0 0( , , )     i

n n

A VN

A V
R N A V

A V

 
 
 = =
  
 
 

                                                       (4) 

(4) Standardization processing 

In order to accurately reflect the situation of real data and eliminate the bias caused by numerical attribute differentiation, the 

classical domain element matrix and the test element matrix mentioned above are normalized, and the following equation is 

obtained: 
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1 1
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n njn

jn jn

Nn Nn

a b

b b
A AVN N
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b b
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  
  

   = = = =        
   
 

 
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         (5) 

1

1

10

2

2'

20 0

1
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Ni
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V
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V
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bR N A V
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 
 
 
 
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 
 
 
 
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                                                              (6) 

Among them, 
'

jR  is the classical domain element matrix of the normalized j  evaluation level, and 
'

0R  is the normalized test 

element matrix.  

Determination of Weight by Entropy Weight Method 

This article uses the entropy weight method to determine weights, and the specific implementation steps are as follows: 

(1) Standardize data using maximum and minimum methods. 

'

( )
           

( ) ( )

( )
          

( ) ( )

ik ik
ik

ik ik

ik

ik ik
ik

ik ik

x min x
x is positive

max x min x
x

max x x
x is negative

max x min x

−
 −

= 
−

 −

                                                   (7) 

Among them, ikx  is the actual value of the i  th feature of the k  th object to be evaluated, and
'

ikx  is the standardized value of 

the i  th feature of the k  th object to be evaluated.  

(2) Normalize the standardized indicator data. 

'

'

1

ik
ik K

ik

k

x
r

x
=

=


                                                                                   (8) 

Among them, ikr  is the proportion of the normalized value of the i  th feature quantity of the k  th object to be evaluated. 

(3) Calculate information entropy 

1

1
ln

ln

K

i ik ik

k

H r r
K =

= −                                                                        (9) 
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Among them, iH  is the information entropy of the i  th feature.  

(4) Calculate the weight of indicators 

1

1

(1 )

i
i n

i

i

H
w

H
=

−
=

−

                                                                           (10) 

Among them, iw  is the entropy weight of the i  th feature.  

Establish correlation functions and determine levels 

By establishing a correlation function, the correlation degree between the tested element and the classical domain element, as 

well as the nodal domain element, can be calculated more accurately. The final correlation level can be obtained using objective 

calculation formulas. 

(1) The distance between the measured object element and the classical domain value. 

1 1 1 1'

1 1 1 1

( , ) 2 2
j j j j

j j

N N N N

a b b a
D v v v

b b b b

   
= − + − −   

   
                                                (11) 

Among them, 
'( , )j jD v v  represents the distance between the object to be evaluated and the classical domain value of the first j  

evaluation level.  

(2) Calculate the feature correlation between the test element and the classical domain element. 

'

1

( ) 1 ( , )
n

j i j j

i

K V w D v v
=

= −                                                                    (12) 

Among them, iw  is the entropy weight of the feature iA .  

(3) Determine the membership level of the object to be evaluated. Let mjVKK jj ,,2,1      )}(max{ == , determine 

that the object under test belongs to level j. 

)(min)(max

)(min)(
)(

VKVK

VKVK
VK

jjjj

jjj

j
−

−
=                                                                  (13) 

)(

)(

1

1

VK

VKj

j
m

j

j

m

j

j





=

= =                                                                                 (14) 

Among them, j  represents the characteristic value of the tested element in the level evaluation, which is used to determine the 

closeness of the tested element towards adjacent levels. 

EXAMPLE ANALYSIS OF MODEL SELECTION EVALUATION OF DELIVERY ROBOTS IN E-COMMERCE 

PARKS  

(1) In this paper, the intelligent delivery robot model selection scheme is categorized into five grades: excellent, good, medium, 

qualified, and poor, 5j = . The values of j  from 1 to 5, correspond to these five grades, respectively. There are 17 indices in the 
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index system, as detailed in section 3.2. Consequently, the five evaluation grades of the robot's applicability, along with the 17 

evaluation indices and their corresponding evaluation metrics, form the classical domain object matrix. The five evaluation levels 

of robot applicability, the 17 evaluation indicators, and the corresponding eigenvalue ranges for each indicator collectively 

constitute the classical domain object matrix. Here, 
1R represents the classical domain object matrix for the excellent level, 

2R

for the good level, 
3R  for the medium level, 

4R  for the qualified level, and 
5R  for the poor level. Additionally, 

1 17~A A  denote 

the 17 indicators within the index system. 

The final matrices of classical domain elements across various grades are presented in the following equation: 

1 1

2

3

4

5

6

7

8

1 9

10

11

12

13

14

15

16

17

(56,60)

(20.00,30.00)
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(2)A section-domain object element matrix, denoted as 
NR , is created by combining the corresponding metrics of the intelligent 

delivery robot with the overall range of eigenvalue quantities of these metrics. This section-domain object element matrix is a 

concatenation of five classical domain object element matrices. The expression for 
NR  is presented below. 
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(3) The matrix of the objects to be measured consists of three classes of intelligent delivery robots, a feature set denoted as A  , 

and quantitative values V  for the various robots. Below, the third to fifth columns of the matrix represent the specific quantitative 

values of different metrics for classes A, B, and C robots, respectively.  
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(4) Specification processing, based on equations (5) and (6), involves determining the upper and lower limits of each indicator 

value range for the classical domain object element. The quantitative value of the object element to be measured is divided by 

the upper limit of the domain section. This unification of the classical domain and the order of magnitude of the object element 

provides a foundation for the subsequent calculation process. 

(5) Calculate the weight of each indicator in the indicator system using the equations (7) to (10) provided above. From the matrix 

of the elements of the object to be measured, it can be observed that the auxiliary interaction function of each robot has the same 

numerical value among the indicators. Consequently, this indicator cannot differentiate the level of each robot selection scheme. 
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Therefore, in this paper, the weight of this indicator is set to 0, while the weights of the remaining indicators are determined 

using the entropy weight method. Table 2 shows the results of the weighting of the indicators for the three categories of objects 

to be appraised. 

Table 2. Indicator weights 

indicators weights indicators weights 

rated capacity 
1A  0.0542 minimum turn radius 

9A  0.0476 

capacity of battery 
2A  0.0505 min. ground clearance 

10A  0.0542 

battery mileage depletion 
3A  0.0542 noise 

11A  0.0629 

maximum mileage 
4A  0.0483 motion accuracy 

12A  0.0499 

overall weight 
5A  0.0509 containment 

13A  0.0629 

dimension 
6A  0.0528 auxiliary interaction functions 

14A  0.0000 

maximum velocity 
7A  0.1289 charge post 

15A  0.0476 

minimum passing widths 
8A  0.0542 charging duration 

16A  0.0517 

minimum turn radius 
9A  0.0476 human intervention approach 

17A  0.1289 

(6) Use the equation (11) above to calculate the distance ( , )j jD v v  between the park delivery robots and each evaluation class. 

The specific values are presented in Table 3 below, using class C robots as an example: 

Table 3. Distance between class C robots and classical domain measures 

indicators 1 1( , )D v v  
2 2( , )D v v  

3 3( , )D v v  
4 4( , )D v v  

5 5( , )D v v  

1A  0.1000 0.0167 0.0000 0.0833 0.2500 

2A  0.0000 0.0003 0.2003 0.3337 0.4003 

3A  0.2500 0.1000 0.0000 0.0500 0.1500 

4A  0.0000 0.0083 0.1333 0.2167 0.2750 

5A  0.0833 -0.0250 0.0333 0.1583 0.2500 

6A  0.1624 0.0201 -0.0200 0.1894 0.3767 

7A  -0.1111 0.1667 0.3333 0.4444 0.5556 

8A  0.1563 0.0500 -0.0313 0.0319 0.2506 

9A  0.0324 -0.0223 0.0228 0.1496 0.2941 

10A  0.1154 0.0769 0.0000 0.0077 0.0846 

11A  -5.6E-17 0.0364 0.0909 0.1455 0.2000 

12A  0.2240 0.0160 -0.0080 0.0480 0.2080 

13A  -5.6E-17 0.0100 0.1100 0.1500 0.3000 

14A  0.2500 0.0000 0.0020 0.1320 0.3020 

15A  5.55E-17 0.1100 0.1900 0.3100 0.4100 

16A  -5.6E-17 0.0179 0.1071 0.1786 0.2500 

17A  0.1633 0.1020 0.0000 0.0102 0.1122 

(7) The closeness ( )jK V  between the three types of robots and each evaluation level is calculated using equation (12) above. 

The level is calculated using equation (13), as shown in Table 4. 

Table 4. Proximity between the three types of robots and each evaluation level 

proximity 1( )K V  
2 ( )K V  

3 ( )K V  
4 ( )K V  

5 ( )K V  grades 
*j  

A 0.8780 0.9371 0.9395 0.8694 0.7592 moderate 2.4760 

B 0.7926 0.8626 0.9032 0.9145 0.8606 eligible 3.5071 

C 0.9340 0.9431 0.9136 0.8345 0.7196 favorable 2.2804 
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From the closeness results presented above, it is evident that among the three types of robots, Class C robot 

2 max{ ( )}jK K V= , which represents the evaluation results of the Class C intelligent delivery robot, performed well. In 

contrast, Class B robot 4 max{ ( )}jK K V= , representing the evaluation results of the Class B intelligent delivery robot, 

received a qualified rating, while Class A robot 3 max{ ( )}jK K V= , which reflects the evaluation results of the Class A 

intelligent delivery robot, received a medium rating. Therefore, the model and parameters of the Class C robot are more 

suitable for the road conditions of the e-commerce park and its related requirements. 

CONCLUSIONS 

E-commerce parks, as concentrated regions for online shopping, have become the main point for e-commerce and express 

delivery service businesses, creating a massive market opportunity. Logistics distribution within these parks is an important part 

of the overall logistics chain, especially for end users. This article investigated the distinct characteristics of the logistics 

distribution environment in e-commerce parks and picks three types of robots now available on the market that are most suited 

to intelligent distribution inside these parks. We created a model selection program for park distribution robots by incorporating 

the principles of designing an evaluation index system. The evaluation scheme used an entropy weight-objective topology model 

to determine the relationship between the three types of robots and the five evaluation criteria, as well as their proximity to 

various performance grades. This technique identified the maximum proximity, allowing us to classify the model selection 

scheme for park delivery robots. After processing and computing the index data for the three robot classes, the C class robot's 

evaluation grade was judged to be good, the B class robot's evaluation grade was qualified, and the A class robot's evaluation 

grade was medium. 
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