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Abstract: 

Three-dimensional (3D) reconstruction can be used to satisfy the requirement of people on 3D cinema, 3D games, 3D 

medical imaging and 3D map. The traditional method on 3D reconstruction needs large computation and possesses low 

accuracy. With the development of AI, more attention to convolutional neural network for three-dimensional reconstruction 

is put. Current 3D reconstruction methods limit the robustness and integrity and reduce the accuracy of reconstructed models 

when dealing with occluded, texture-free, or low-textured local backgrounds. Aiming at the problems of low accuracy and 

cost volume construction in the current 3D reconstruction process, a 3D reconstruction method based on iterative refinement 

of multi-scale residuals was proposed. The basic idea is to obtain the initial depth map by feature extraction to generate point 

clouds, and then use multi-scale feature fusion pyramid multi-layer perceptron (MLP) network to obtain point features at 

different levels. This new multi-scale residual MLP iterative network is used to predict the depth value, and the residual 

between the depth prediction and the real value is used to estimate the loss. This method attains more precise depth 

information that enhances the ability of 3D reconstruction of objects, simplifies the network model, and reduces the 

computational burden. Investigational outcomes show that the suggested method can be used in processing the binocular 

vision with occluded, texture-free or low-textured local backgrounds and generating higher quality 3D reconstructed objects 

than the previous methods. 
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INTRODUCTION 

3D reconstruction in computer vision is key technique of the computer science. Its application is widely spread in industry, 

entertainment, military and transportation.  Shape from shading (SFS), Structure from motion (SFM), laser radar, Synthetic 

Aperture Radar (SAR), millimeter radar and Positive electron tomography (PET) are typical 3D reconstruction methods. 

Convolutional neural network (CNN) is extensively applied in various territories of the image processing field such as pattern 

recognition, 3D reconstruction and colorization.  

Chang proposed an end-to end pyramid stereo matching network [1] which makes computation more efficient. Chen developed 

the over-smoothing issue of Convolutional neural network (CNN) in view of disparity estimation [2]. Wang studied the raw 

evaluation of stereo image depth on mobile devices at any time [3] that the single module regularization and the training are 

improved on the super-sliding and the whole structure. Voynov built multi-view large-scale dataset [4] among which the scenes 

are utilized in strengthening a diverse set of material properties which is a difficulty for previous algorithms. Around 1.4 

million images of one hundred and seven different scenes derived from one hundred viewing paths depending under fourteen 

kinds of lighting are provided. Zhou proposed Sparse Fusion for 3D reconstruction [5], in which distilling view-conditioned 

diffusion was used. Singh developed multi-layer perceptron (MLP) network[6] which can be applied to pattern recognition and 

3D reconstruction. The problems of 3D reconstruction on binocular vision are given as follows: 

(1) Construction of the cost volume is difficulty; 

(2) The precision of the 3D reconstruction is low; 

(3) Large Computation is needed. 

In this paper, so as to obtain HD quality 3D reconstruction on binocular vision, advanced convolution network that based on 

multi-scale residual MLP is utilized.  

THE PRINCIPLE OF 3D RECONSTRUCTION BASED ON THE MULTI-SCALE RESIDUAL MLP ITERATIVE 

NETWORK 

According the problem that construction of the cost volume is difficult and the precision of the 3D reconstruction is shallow, a 

3D rebuilding technique based on multi-scale residual multi-layer perceptron (MLP) iterative network is offered. In this 
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method, a rough depth chart is built with smaller computation first. Then, by extracting the features from every point of the left 

picture and the right one, an iterative refined depth chart is got by a multi-scale residual MLP iterative network. 

Structure of the Network 

The structure of the multi-scale residual MLP iterative network for the depth detection is shown in Figure 1 in which two 

images from the binocular vision are reconstructed into 3D objects. There are two steps of this structure: 

(1) The characteristics are moved out from the binocular vision images with a feature extraction network, the homograph 

of two feature diagrams employed forming the matching cost volume. The possibility volume got with the help of the 

possibility normalization along the direction of the depth.  Therefore, the initial depth is achieved from the possibility volume. 

The initial depth is helpful to 3D reconstruction. 

(2) A multi-scale residual MLP iterative network is used in refining the depth. A multi-scale pyramid network is put in 

order to get the multi-scale image features. The point features are got by the connection between the variance of the image 

feature and the normalized coordinates of the world coordinate system. Then, point features of different scales are achieved 

with three-layer residual MLP module. The exchange of the point features is implemented with a multi-layer perceptron 

(MLP). A possibility scalar SoftMax is outputted as the prediction of the residual depth. The view field is enlarged by multiple 

iteration in order to get more accuracy depth prediction. Loss is computed by the predicted feature points and the information 

of binocular vision images. A appreciate loss function is employed to do the iteration of the feature points & train the network. 

 
Figure 1. Structure of the multi-scale residual MLP iterative network for the depth detection 

Achievement of the Depth Map 

Achievement flow chart of the depth map shown in Figure 2 consists of feature extraction, construction of matching cost 

volume, cost polymerization, possibility normalization and computation of the depth.  The feature extraction is the process to 

extract the feature matrix from the image information, and is important to 3D reconstruction, because the accuracy of the 

feature extraction gives effects to the accuracy of the follow-up depth. Although the multi-layer convolutional network of 

PSMNet[1] is good at the feature extraction, the gradient will disappear as the deep of the convolutional network increase, 

which affects the ability of the feature extraction. 

 
Figure 2. Achievement flow chart of the depth map 

To achieve the goal of solving the issue that extensive computation is demanded in the feature extraction network or the 

network is just simply too complicated, a following four-parts convolutional network is used: three same subnets which are all 

composed of two 3 3 convolution layers and a 5 5 convolution layer; the fourth part consists of two 3 3 convolution layers. 
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The output of the network is the feature map with two 32 channels, the size of the output is 1/8 of the input images. In the other 

word, the process of the above network is 1/8 down-sampling process. For the input image ( )2,1=iIi , the output feature map 

after the processing of the convolutional network is iF . 

The second step of the network is to construct the matching cost volume from the gotten image features and the basic 

parameters of the camera. Because the extracted features belong to different coordinate system, homography matrix must be 

used to transform all feature map to different planes in the camera coordinate system to form two feature volumes. Eq. 1 and 

Eq. 2 can be used to implement End-to-end depth map inference of the feature map to the reference coordinate system.  
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 21,VV  got from Eq. 2 can be used as the input of the next part, i.e. the cost polymerization in which  21,VV  is polymerized as 

a cost volume C. In two input images of the binocular vision, W, H, D, and F are the width, height, the number of the sampling 

of the input images and the number of the feature map channels. A cost volume C with the size of  FD
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Where iV  represents the average feature volume of two images of the binocular vision. 

Substitute for the average used in Hartmann’s cost volume computation[8], variance is applied to inference the similarity 

between the image blocks, the yielded cost volume can be a measure for difference between view features. 

The cost volume got from the feature map may be affected by the lighting and object occlusion, therefore, Some sliding 

constraint is needed for more precision data. Softmax is used get cost volume C before possibility normalization refinement to 

produce the possibility volume P which can be applied to inference the depth of the objects more accurate. The prediction of 

the pixel depth and the determination of the confidence level of the measurement estimation can be done. 

Depth D can be computed from possibility volume P with Eq. (4), which is Winner-Take-All of Collins. 
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= max
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d

dd
dPdD                                                                                                             (4)  

Where )(dP  is the pixel possibility estimation on depth d and is complete differentiable. The expectation along the direction 

of the depth is in the range of  maxmin ,dd . The output depth possesses the identical size as the 2d image feature map. 

Afterwards, the initial depth map can be obtained. The next stage of work is to refine the depth information for getting more 

accurate 3D model of the objects. Two steps of the next step are the point feature extraction with a multi-scale feature fusion 

pyramid network and the prediction of the depth residual with a multi-scale residual MLP iterative network. The second step is 

different from the scheme based on the cost volume and the features are determined by the fixed space regions of the scene. 

Multi-scale Feature Fusion Pyramid Network 

The feature pyramid is widely applied in computer vision, in which low-resolution and high-resolution are respectively used to 

detect big targets and small targets. Pyramid network is commonly used to process the information with different scale or 

resolution. The pyramid structure used in this paper is shown in Figure 3. This network is the improved one of Lin’s feature 

pyramid networks [8]. 
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Figure 3. Multi-scale feature fusion pyramid network 

As Figure 3, two input images are all put the feature fusion pyramid network and the image features of each layer is got. The 

residual block of different scale through each 33  convolutional layer are represented as 321 ,, ccc .The signal will pass 

through the top-down process and the bottom-up process. In the case of top-down process, after passing through 11  

convolutional layer, two times up-sampling with bilinear interpolation is done. The up-sampling feature map is linked with the 

feature block of next stage to form the input through 33  convolutional layer. In top-down process, strong semantics 

information is mapped from low resolution to features of high resolution. Therefore, the ability of extract the features of the 

small targets is improved. In the same way, the bottom-up process is similar with the top-down process, only the direction of 

propagation is contrary to that of the bilinear interpolation.  In bottom-up process, the features are mapped from high resolution 

to features of low resolution. Therefore, the ability of extract the features of the large targets is improved. 

For each image, 2,1=iPi  is obtained with a multi-scale feature fusion pyramid network. The correct feature parameters can 

be obtained by scaling up or down each responding feature map with inner parameters of the camera. For i layer multi-scale 

feature fusion pyramid network, the variance measure of two views  21,NN is computed with Eq. 5: 
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Where 1

iP and 2

iP represent the features of two different images after passing through the feature pyramid. 

In order to obtain the feature of each 3D point, the feature point pC can obtained the connection of iN and the normalized 

point coordinate pX  as Eq. 6: 

( )pip XNconcatC ,=                                                                                     (6) 

 Where the initial value of pX is the point coordinate of the initial depth, point feature information of next step multi-scale 

residual MLP network is used as pX  of new iteration. 

Multi-Scale Residual MLP Iterative Network 

After being processed by the multi-scale feature fusion pyramid network, the signal is connected with the normalized point 

coordinate pX  and the feature point pC is obtained, as shown in Figure 4. However, the accuracy of pC is low, the data 

structure is irregular and unordered. The refinement of the depth map is necessary. Local region [9] is important to the accuracy 

of the depth detection. The feature polymerization [10] is also necessary.  In order to get the spatial and geometrical information, 

convolution, graph or attention mechanism [ are used in the previous researches. Based in this research, a new network, called 

multi-scale residual MLP, is used to predict the depth residual. The multi-scale residual MLP is repeated on multi-stages to 

enlarge the receptive field and achieve complete geometrical information of the feature point. The method of the dynamic 

features extraction is applied to refine the depth of 3D reconstructed objects.  Figure 4 shows a iterative process in the multi-

scale residual MLP, in which three-layer residual module is used to extract the depth polymerization features, as shown in 

Figure 4(a). Each residual module is composed of two MLP layers, one batch normalization layer BN and one activation 

function ReLU, as shown in Figure 4(a). 
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Figure 4. Multi-scale residual MLP iterative network 

So as illustrated in the Figure, the residual optimization layer consists of Grouping, MLP and 1 ×1 convolutional layer. A 

residual connection is added to reduce the disappear of the gradient caused by the stacking of MLP. 

For the input feature Cp, after the processing by three layer MLP iterative network, a possibility scalar softmax is obtained. 

Then, the depth prediction of the residual can be written as: 

d=E(ks)=∑ 𝑘𝑠 × 𝑝𝑟𝑜𝑏( 𝑝𝑘̃)𝑚
𝑘=−𝑚

                                                         (7) 

Where 𝑝𝑟𝑜𝑏( 𝑝𝑘̃) is the weighted possibility sum of all imaginary point displacement. The depth refinement of the addition of 

the residual depth and the initial depth can be applied to get more accuracy 3D model. 

Loss Function 

Commonly speaking, the loss function for most 3D reconstruction of the binocular vision is related to the depth after the cost 

computation. Experimental research shows such loss function restrict the precision of 3D reconstruction. The loss function of 

this paper described in Eq. 8 consists of Loss 1 and Loss 2: 

( ) ( ) ( ) ( )pDpDpDpDLoss rPp i
valid

−+−= 
                                                          (8) 

Where validP is the real pixel set, )( pD is real depth of the pixel p, )( pDi is predicted depth of pixel p, )( pDr is refined 

prediction of the depth on pixel p.   is 1. ( ) ( )pDpD i−  is Loss 1, ( ) ( )pDpD r− is Loss 2. 

EXPERIMENT AND THE ANALYSIS 

The experimental platform of our algorithm is Pytorch, the operating system is Ubuntu, GPU is NVIDA RTX 3080, RAM of 

the display-card is 12G. 

In the case of the experiment in which KITTI is used as the training dataset, the size of the images is 256512 , The number 

of Views is 2, batch size is set as 2, maximum depth 192=D . In the case of the experiment in which Adam is used as the 

training dataset, the initial learning rate is 1×10-3, 9.01 = , 999.02 = . In the case of the experiment in which Scene Flow is 

used as the training dataset, the learning rate is 1×10-3. Ten epochs are used. 
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Dataset 

KITTI and Scene Flow are used as the training datasets and the test datasets proving the usefulness of the raised method in this 

research.  

Comparative Experiment on KITTI 

Eight previous networks, i. e. GC-NetError! Reference source not found., PSM-NetError! Reference source not found., HD3-StereoError! Reference 

source not found., LEAStereoError! Reference source not found., AcfNetError! Reference source not found.,HITNetError! Reference source not found., CFNetError! 

Reference source not found. are used in the comparative experiment on KITTI 2012 and KITTI 2015. 

Table 1. Comparative experiment result of the previous network and ours network with KITTI 2012 dataset 

Method 
2PE 3PE 4PE 5PE 

Noc All Noc All Noc All Noc All 

GC-NetError! Reference source not found. 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 

PSM-NetError! Reference source not found. 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 

HD3-StereoError! Reference source not found. 2.00 2.56 1.40 1.80 1.12 1.43 0.94 1.19 

LEAStereo[12] 1.90 2.43 1.13 1.45 0.83 1.08 0.67 0.88 

AcfNetError! Reference source not found. 1.83 2.35 1.17 1.54 0.92 1.21 0.77 1.01 

HITNetError! Reference source not found. 2.00 2.65 1.41 1.89 1.14 1.53 0.96 1.29 

CFNetError! Reference source not found. 1.90 2.43 1.23 1.58 0.92 1.18 0.74 0.94 

Ours 1.82 2.39 1.11 1.56 0.81 1.08 0.66 0.87 

 

Table 2. Comparative experiment result of the previous network and ours network with KITTI 2015 

Method 
Noc All 

D1-bg D1-fg D1-bg D1-fg 

GC-NetError! Reference source not found. 2.02 5.58 2.21 6.16 

PSM-NetError! Reference source not found. 1.71 4.31 1.86 4.62 

HD3-StereoError! Reference source not found. 1.56 3.43 1.70 3.63 

LEAStereoError! Reference source not found. 1.29 2.65 1.40 2.91 

AcfNetError! Reference source not found. 1.36 3.49 1.51 3.80 

HITNetError! Reference source not found. 1.54 2.72 1.74 3.20 

CFNetError! Reference source not found. 1.43 3.25 1.54 3.56 

Ours 1.29 2.63 1.47 2.89 

 

As exhibited in Table 1 and Table 2, most results of our method show it has superior performance over the traditional methods. 

To obtain the visual effect of the above experiments, the visual result of disparity maps on two methods, as shown in Figure 5. 

Either on KITTI 2012 dataset or on KITTI 2012 dataset, Our method has better disparity map than CFNet[14].  

 
Figure 5. Comparative experiment results of disparity maps on KITTI dataset 

Comparative Experiment on Scene Flow Dataset 
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To prove the effectiveness in the case that there is occlusion, Scene Flow dataset is utilized in completing the comparative 

experiment. Here the cost of EPE (End-Point-Error) is used to represent the average Euclidean distance between the predicted 

disparity map and real disparity map. Table 3 exhibits the result of such a comparative experiment among GC-NetError! Reference 

source not found., PSM-NetError! Reference source not found., HD3-StereoError! Reference source not found., AcfNetError! Reference source not found., 

CFNetError! Reference source not found. and our algorithm . The smaller EFE is, the more accurate the predicted disparity map. The 

result shows our algorithm possesses more accurate disparity map than the main previous algorithm.  

Table 3. EPE of different algorithms on Scene Flow 

algorithm EPE[px] 

GC-Net[9] 2.51 

PSM-Net[10] 1.09 

HD3-StereoError! Reference source not found. 1.08 

AcfNetError! Reference source not found. 0.87 

CFNetError! Reference source not found. 0.97 

Ours 0.81 

 

The visual result of disparity maps on two methods, as shown in Figure 6. In the case of occlusion image ans less-texture 

image, such as Scene Flow dataset, Our method has better disparity map than CFNet[11].  

 
Figure 6. Comparative experiment results of disparity maps on Scene Flow dataset 

Ablation Experimental Results and the Analysis 

KITTI 2012 and KITTI 2015 are used as the dataset, two images of them are chosen as the test images. The size of the images 

is 256512 . The depth of the network is 192. t-PE, D1-bg and D1-fg are used as the cost to evaluate the effectiveness of the 

methods on the ablation experiment. Table 4 shows the result of such ablation experiment.   

Table 4. Ablation experimental results 

Method Multi-scale feature fusion pyramid network 
Multi-scale residual MLP iterative 

network 

KITTI 2012 KITTI 2015 

2PE 3PE Noc All 

Noc All Noc All D1-bg D1-fg D1-bg D1-fg 

Method I × × 2.34 3.13 1.95 2.33 1.96 3.59 1.89 4.16 

Method II × √ 2.14 3.01 1.87 2.12 1.76 3.23 1.79 3.67 

Ours √ √ 1.81 2.39 1.11 1.56 1.29 2.63 1.47 3.07 
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In method I, adaptive feature extraction network and multi-layer region matching weight network are removed. In method II, 

multi-layer region matching weight network is removed. When KITTI 2012 and KITTI 2015 are chosen as the dataset, the 

Ablation experimental results shows our method is better than method I and method II.  

CONCLUSION 

The multi-scale residual refined network is proposed for depth detection. There are three sub-networks or processing in this 

network, i. e. multi-scale feature fusion pyramid network, feature extraction network and iterative refining module. The 

experimental result shows the multi-scale residual refined network possesses better effect on 3D reconstruction than the 

previous methods and can produce more precision 3D object model with small computation and without constructing 

complicated cost volume. 

The future work may be three parts as follows: 

(1) It is to build a larger 3D image dataset.  

(2) Lightweight networks is used to save the computation.  

(3) 3D reconstruction in the complicated scene will be studied. 
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