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Abstract. 

This study introduces a novel family of memoryless nonlinear conjugate gradient algorithms that produce an 

appropriate search direction for gradient descent at each iteration. This condition is applicable irrespective of the 

exactness of the line search and the convexity of the goal function. We demonstrate that the offered approaches 

achieve global convergence for non-convex functions under specific conditions. Numerical findings illustrate 

the efficacy of these novel hybrid approaches when applied to specific test issues in comparison to the 

conventional Mawlana CG algorithm . 

1. Introduction. 

We are interested in the unconstrained optimization problem[1] 

𝑚𝑖𝑛𝑓(𝑥),                                                                                                                   (1) 

where 𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function. We denote its gradient ∇𝑓  

 by𝑔. Quasi-Newton methods are known as effective numerical methods for solving problem (1), and they are 

iterative methods of the form[2]: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                                                                 (2) 

Where xk is the current iteration point and αk is the step length being calculated 

By performing a line search, dk is the search direction specified by[3]: 

𝑑𝑘+1 = {
−𝑔𝑘+1                               𝑖𝑓 𝑘 = 0
−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘                 𝑖𝑓 𝑘 ≥ 1

                                                              (3) 

where 𝛽𝑘is scalar. The differences highlight CG methods in their speed and performance by specifying the 

numerical parameter 𝛽𝑘, and  the set of the effective versions of 𝛽𝑘acontained in source [4]. 

However, it is important to note that the behavior of the following approaches might vary significantly for 

general objective functions, even if they may appear equivalent in cases where f is a strictly convex quadratic 

function and k is determined using exact line searches (ELS). Wolfe conditions, strong Wolfe conditions, and 

strong Wolfe conditions are examples of inexact line searches (ILS) that are hoped for in the convergence 

analysis of conjugate gradient methods. 

1. standard Wolfe line search: 

{
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎𝑑𝑘

𝑇𝑔𝑘

                                                                            (4𝑎)   

2. strong Wolfe line search: 

{
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘

𝑇𝑑𝑘

|𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)| ≤ −𝜎𝑑𝑘

𝑇𝑔𝑘

                                                                           (4𝑏)   
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2. Equations (2) can be represented by: 

{
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘

𝑇𝑑𝑘

𝜎𝑑𝑘
𝑇𝑔𝑘 ≤ 𝑑𝑘

𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 0
                                                                            (5)   

Where  0 < 𝛿 <
1

2
 𝑎𝑛𝑑 𝛿 < 𝜎 < 1 [5] 

Optimization plays a pivotal role in various scientific, engineering, and economic applications. The pursuit 

of finding optimal solutions efficiently and accurately has led to the development of numerous mathematical 

methods and algorithms. Among these, the Quasi-Newton methods have garnered significant attention due to 

their balance of computational efficiency and convergence properties[6]. 

The traditional Quasi-Newton methods rely on approximating the Hessian matrix, which can be computationally 

expensive and memory-intensive for large-scale problems. To address these challenges, researchers have 

developed the Memoryless Quasi-Newton Method, which offers a promising alternative by reducing the 

memory requirements while maintaining robust performance in optimization tasks[7]. 

 

This paper aims to provide a comprehensive overview of the Memoryless Quasi-Newton Method, including its 

theoretical foundations, algorithmic structure, and practical applications. By eliminating the need for storing and 

updating the Hessian matrix or its approximations, this method significantly reduces the computational burden, 

making it particularly suitable for high-dimensional optimization problems. 

 

The Memoryless Quasi-Newton Method represents a significant advancement in optimization techniques, 

balancing the need for accurate and efficient optimization with the practical constraints of memory and 

computational resources. By leveraging this method, practitioners can tackle large-scale optimization problems 

more effectively, opening the door to new possibilities and innovations in various fields[7], [8]. 

 

2 New Directions in Memoryless Methodologies  

The memoryless variant addresses these issues by not explicitly storing or updating the Hessian matrix or its 

approximations . 

-      The mathematical form 

A common memoryless Quasi-Newton method is the Memoryless BFGS (Broyden–Fletcher–Goldfarb–Shanno) 

algorithm, where the search direction is updated as follows: 

𝑑𝑘+1 = −𝛻𝑓𝑘+1 + 𝛽𝑘𝑑𝑘                                                                       (6) 

Here, 𝛽𝑘  is a scalar that can be determined by various formulas. 

Sometimes, conjugate gradient formulas produce the TTCG type. 

𝑑𝑘+1 = −𝛻𝑓𝑘+1 + 𝛽𝑘𝑑𝑘 − 𝛾𝑦𝑘                                                             (7) 

And γ parameter where represent the third term parameter to produce TTCG. 

Our approach to the memoryless direction of the three-term type of Hessian matrix commences with a mole of 

conjugate gradient formulations. Such as the parameter of conjugation for the researcher Mawlana at certain 

times and for revising the formulas of the researcher Mawlana at other times. 

2.1 New Maulana Memoryless algorithm  

The conjugate gradient and the preconditional conjugate gradient were discussed in the third and fourth chapters 

respectively. The inclusion of the two chapters was admirable, nevertheless, it exhibited some slowing down 

when dealing with high dimensions problems. Hence, our objective is to decrease memory consumption in the 

enhanced algorithms discussed in the preceding two chapters by implementing the notion of memoryless 

memory. 
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dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk                                                       

If we are discussing the preconditional tendency, Utilizing the concept of memory lessness, we deduct the 

Hessian approximation matrix  𝐻 from the neutral convolution, thereby determining the direction using the 

following formula: 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk                                                        (8) 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk                                                         (9) 

𝐻𝑘+1
𝐵𝐹𝐺𝑆 = (I −

𝑦𝑘𝑠𝑘
𝑇 + 𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) + ((1 +
𝑦𝑘

𝑇𝑦𝑘

𝑦𝑘
𝑇𝑠𝑘

)
𝑠𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 

𝛼𝑘 here is close to ensure that  

𝑠𝑘
𝑇𝑑𝑘 > 0, Hence 𝐻𝑘+1

𝐵𝐹𝐺𝑆 is +ive definite 

𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 

 

After placing I on the matrix H, Where the parameter of conjugacy βk
M1 , βk

M2 given by 

𝛽𝑘
𝑀1 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘−1‖

𝑔𝑘 − 𝑔𝑘)

𝑔𝑘
𝑇(𝑔𝑘+1 − 𝑑𝑘)

                                                             (10) 

𝛽𝑘
𝑀2 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

(1 − 𝜇)‖𝑑𝑘‖2 + 𝜇‖𝑔𝑘‖2
                                (11) 

Where 𝜇 = 0.6 

 

2.2 Our memoryless algorithms Outline (𝐌𝟏)  

1- For 𝑋0 ∈ 𝑅𝑛 , 0 <∈<< 1, 0 < 𝛿 <
1

2
 , 𝑎𝑛𝑑 𝛿 < 𝜎 < 1,   

2- set 𝑑0 = −𝑔0 , 𝑘 = 0. 

3- If ‖𝑔𝑘‖ <∈, then stop, otherwise go to the next step. 

4- Compute step size 𝛼𝑘 by Wolfe line search (4(a,b)) 

5- Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  , if ‖𝑔𝑘+1‖ <∈, then stop. 

6- Calculate the new search directions by 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk 

𝛽𝑘
𝑀1 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘−1‖

𝑔𝑘 − 𝑔𝑘)

𝑔𝑘
𝑇(𝑔𝑘+1 − 𝑑𝑘)

 

7- Set 𝑘 = 𝑘 + 1, and go to step2. 

 

Property (Gilbert and J. Nocedal, 1992) 

Suppose that the general conjugate gradient method is used and that 0 < δ ≤ ‖𝑔𝑘‖ ≤ 𝛿̅ is achieved in it, then 

this method has property if the constants 𝑏 > 1  and 𝑝 > 1  are found, for example, for every k, 
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|𝛽𝑘| ≤ 𝑏                                                                                                              (12) 

‖𝑠𝑘‖ ≤ 𝑝 => |𝛽𝑘| ≤
1

2𝑏
                                                                                (13) 

2.1.3 Theorem  

Suppose that Assumption (3.3.1) (3.3.2) holds. Any CG method of the 

form (2) and (3) with 𝑑𝑘 is a descent search direction and 

𝛼𝑘 satisfies (SWP) in (4b). If 

∑
1

‖𝑑𝑘‖2
= ∞ lim

k→∞
inf‖𝑔𝑘‖ = 0                                                               

𝑘≥0

(14) 

(Dai and Liao, 2001) 

 

2.3 The Descent Property of a CG New Method (𝑴𝟏) 

The descent property for our proposed new conjugate gradient scheme must be demonstrated 

below, referred to as 𝑀1. In the next, we argue the sufficient descent.  

2.3.1 Theorem (1)  

The search direction 𝑑𝑘+1 and 𝛽𝑘
𝑀1 given in equation 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk                                                          (15) 

is a descent direction where: 

𝐻𝑘+1
𝐵𝐹𝐺𝑆 = (I −

𝑦𝑘𝑠𝑘
𝑇 + 𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) + ((1 +
𝑦𝑘

𝑇𝑦𝑘

𝑦𝑘
𝑇𝑠𝑘

)
𝑠𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) 

From Lipschitz condition we have     

‖𝑦𝑘‖ = 𝑙‖𝑠𝑘‖ 

𝐻𝑘+1
𝐵𝐹𝐺𝑆 = (I −

𝑙‖𝑠𝑘‖2 + 𝑙‖𝑠𝑘‖2

𝑙‖𝑠𝑘‖2
) + ((1 +

𝑙2‖𝑠𝑘‖2

𝑙‖𝑠𝑘‖2
)

‖𝑠𝑘‖2

𝑙‖𝑠𝑘‖2
) 

𝐻𝑘+1
𝐵𝐹𝐺𝑆 = (I −

2𝑙‖𝑠𝑘‖2

𝑙‖𝑠𝑘‖2
) + (

‖𝑠𝑘‖2

𝑙‖𝑠𝑘‖2
+ 1) 

𝐻𝑘+1
𝐵𝐹𝐺𝑆 = (I − 1 +

1

𝑙
) = 𝑅𝑘                                                                           (16) 

𝐻𝑘
𝐵𝐹𝐺𝑆 = (I − 1 +

1

𝑙
) = 𝑅𝑘−1                                                                       (17) 

 where I is Diagonal matrix 

and 

𝛽𝑘
𝑀1 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘−1‖

𝑔𝑘 − 𝑔𝑘)

𝑔𝑘
𝑇(𝑔𝑘+1 − 𝑑𝑘)

                            (18) 

 

Proof: We begin by Multiplying (15) by gk+1 and substituting 𝐻𝑘+1
𝐵𝐹𝐺𝑆, 

𝐻𝑘
𝐵𝐹𝐺𝑆 by (16), (17) in (15) 
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dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2+𝑅𝑘−1βk

M1𝑑𝑘
𝑇gk+1                                               (19) 

By using (IEL) property, we get  

𝑑𝑘
𝑇𝑔𝑘+1 = 𝑑𝑘

𝑇𝑔𝑘+1 − 𝑑𝑘
𝑇𝑔𝑘 + 𝑑𝑘

𝑇𝑔𝑘 

= dk
T(gk+1 − gk) + dk

Tgk = dk
Tyk + dk

Tgk < dk
Tyk                                    (20) 

Subsuming(20) in (19) 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2+𝑅𝑘−1βk

M1𝑑𝑘
𝑇yk  

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘 − 𝑔𝑘)

𝑔𝑘
𝑇(𝑔𝑘+1 − 𝑑𝑘)

𝑅𝑘−1𝑑𝑘
𝑇yk 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 + (

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1

𝑇 𝑔𝑘 − 𝑔𝑘+1
𝑇 𝑔𝑘

𝑔𝑘
𝑇𝑔𝑘+1 − 𝑔𝑘

𝑇𝑑𝑘

) 𝑅𝑘−1𝑑𝑘
𝑇yk 

by powell condition  

𝑔𝑘+1
𝑇 𝑔𝑘 = 0.2‖𝑔𝑘+1‖2 

 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 + (

‖𝑔𝑘+1‖2 +
0.2‖𝑔𝑘+1‖3

‖𝑔𝑘‖
+ 0.2‖𝑔𝑘+1‖2

𝑔𝑘
𝑇𝑔𝑘+1 − 𝑔𝑘

𝑇𝑑𝑘

) 𝑅𝑘−1𝑑𝑘
𝑇yk 

 

By using descent condition  

𝑔𝑘
𝑇𝑑𝑘 ≤ 0 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

‖𝑔𝑘‖‖𝑔𝑘+1‖2 + 0.2‖𝑔𝑘+1‖3 + 0.2‖𝑔𝑘‖‖𝑔𝑘+1‖2

‖𝑔𝑘‖

𝑔𝑘
𝑇𝑔𝑘+1

) 𝑅𝑘−1𝑑𝑘
𝑇yk 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

‖𝑔𝑘‖ + 0.2‖𝑔𝑘+1‖ + 0.2‖𝑔𝑘‖

‖𝑔𝑘‖𝑔𝑘
𝑇

𝑔𝑘+1

) ‖𝑔𝑘+1‖2𝑅𝑘−1𝑑𝑘
𝑇yk 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

1.2‖𝑔𝑘‖ + 0.2‖𝑔𝑘+1‖

‖𝑔𝑘‖𝑔𝑘
𝑇

𝑔𝑘+1

) ‖𝑔𝑘+1‖2𝑅𝑘−1𝑑𝑘
𝑇yk            (21) 

 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

1.2‖𝑔𝑘‖ + 0.2‖𝑔𝑘+1‖

‖𝑔𝑘‖𝑔𝑘
𝑇

𝑔𝑘+1

) ‖𝑔𝑘+1‖2𝑅𝑘−1𝑑𝑘
𝑇yk 

dk+1
T gk+1 ≤ − (𝑅𝑘 + (

1.2‖𝑔𝑘‖ + 0.2‖𝑔𝑘+1‖

‖𝑔𝑘‖𝑔𝑘
𝑇

𝑔𝑘+1

) 𝑅𝑘−1𝑑𝑘
𝑇yk) ‖𝑔𝑘+1‖2 

dk+1
T gk+1 ≤ −𝑐‖𝑔𝑘+1‖2 

Where 

c = 𝑅𝑘 + (
1.2‖𝑔𝑘‖ + 0.2‖𝑔𝑘+1‖

‖𝑔𝑘‖𝑔𝑘
𝑇

𝑔𝑘+1

) 𝑅𝑘−1𝑑𝑘
𝑇yk    ,   𝑐 > 0 
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3  Global convergence study 

We will show that the Memoryless CG technique with 𝛽𝑘
𝑀1 globally converges. For the suggested 

new algorithm's convergence, we need to make some assumptions.  

3.1 Assumption (1) 

a. Suppose 𝑓  in the level set below, is bound 

𝐾 = {𝑥 ∈ 𝑅𝑛: 𝜑(𝑥) ≤ 𝜑(𝑥0)}; in some  initial point.  

b. 𝜑 is Its gradient is Lipschitz constant and it is continuously differentiable, there exists 𝐿 > 0  in the sense that 

[9]: 

∥ 𝑔(𝑥) − 𝑔(𝑦) ∥≤ 𝐿‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑁                                                          (22)                                                  

Under assumption(1), on the other hand, it is obvious that a positive constant 𝑀 exists 

‖𝑥‖ ≤ 𝑀, ∀𝑥 ∈ 𝐾                                                                                                         (23)                                                                                        

∥ 𝛻𝑓(𝑥) ∥≤ 𝛾, ∀𝑥 ∈ 𝐾                                                                                                  (24)                                                                                 

 

3.1.1 Lemma  

Assume Assumption (1) and Equation (18) are correct. Take any conjugate gradient approach 

between (2) and (3), where 𝑑𝑘 is the descent direction and 𝛼𝑘 is the S.W.L.S. If 

∑
1

∥ 𝑑𝑘+1 ∥2

𝑘>1

= ∞ 

then we have 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓 ∥ 𝑔𝑘 ∥= 0  

More details can be found in [10] [11].  

3.1.2 Theorem (2) 

Assume that Assumption (1) and Equation (2) are true, as well as the descent condition. Consider the following 

conjugate gradient scheme: 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk 

 Where 𝛼𝑘 is calculated based on the strong Wolfe line search condition (SWLS); for more details see[12][13]. 

If the objective function is uniformly on set S, then 

 𝑙𝑖𝑚
𝑛→∞

(𝑖𝑛𝑓 ∥ 𝑔𝑘 ∥) = 0 . 

  

Proof  

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M1dk 

‖𝑑𝑘+1‖ = 𝑅𝑘‖𝑔𝑘+1‖ + 𝑅𝑘−1|𝛽𝑘
𝑀1|‖𝑑𝑘‖                                                                 (25) 

We take each part separately and deduce its value: 

𝛽𝑘
𝑀1 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘−1‖

𝑔𝑘 − 𝑔𝑘)

𝑔𝑘
𝑇(𝑔𝑘+1 − 𝑑𝑘)

 

𝛽𝑘
𝑀1 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖2

‖𝑔𝑘‖
𝑔𝑘 − 𝑔𝑘+1

𝑇 𝑔𝑘

𝑔𝑘
𝑇𝑔𝑘+1 − 𝑔𝑘

𝑇𝑑𝑘
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|𝛽𝑘
𝑀1| = |

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖2

‖𝑔𝑘‖
𝑔𝑘 − 𝑔𝑘+1

𝑇 𝑔𝑘

𝑔𝑘
𝑇𝑔𝑘+1 − 𝑔𝑘

𝑇𝑑𝑘

| 

|𝛽𝑘
𝑀1| ≤

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖2

‖𝑔𝑘‖
‖𝑔𝑘‖ − ‖𝑔𝑘+1‖‖𝑔𝑘‖

‖𝑔𝑘‖‖𝑔𝑘+1‖ − ‖𝑔𝑘‖‖𝑑𝑘‖
 

|𝛽𝑘
𝑀1| ≤

−‖𝑔𝑘+1‖‖𝑔𝑘‖

‖𝑔𝑘‖‖𝑔𝑘+1‖ − ‖𝑔𝑘‖‖𝑑𝑘‖
 

|𝛽𝑘
𝑀1| ≤

−𝛾̅𝛿 ̅

𝛿 ̅𝛾̅ − 𝛿 ̅‖𝑑𝑘‖
 

|𝛽𝑘
𝑀1| ≤

−𝛾̅𝛿 ̅

−𝛿 ̅(‖𝑑𝑘‖ − 𝛾̅)
 

|𝛽𝑘
𝑀1| ≤

𝛾̅

‖𝑑𝑘‖ − 𝛾̅
= 𝐸1                                                                                            (26) 

Substituting the  (26) in(25) 

‖𝑑𝑘+1‖ = 𝑅𝑘𝛾̅ + 𝑅𝑘−1𝐸1‖𝑑𝑘‖ 

‖𝑑𝑘+1‖ = 𝑅𝑘𝛾̅ + 𝑅𝑘−1𝐸‖𝑑𝑘‖ 

Then we get 

0 < ∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
< ∞

∞

𝑘=0
 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2

∞

𝑘=0
≤ ∑

1

𝑐2

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0
< ∞ 

then 

𝑙𝑖𝑚
𝑘→∞

  𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

 

3.1.3Our memoryless algorithms Outline (𝐌𝟐)  

1- For 𝑋0 ∈ 𝑅𝑛 , 0 <∈<< 1, 0 < 𝛿 <
1

2
 , 𝑎𝑛𝑑 𝛿 < 𝜎 < 1,   

2- set 𝑑0 = −𝑔0 , 𝑘 = 0. 

3- If ‖𝑔𝑘‖ <∈, then stop, otherwise go to the next step. 

4- Compute step size 𝛼𝑘 by Wolfe line search (4(a,b)). 

5- Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  , if ‖𝑔𝑘+1‖ <∈, then stop. 

6- Calculate the new search directions by 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk 

𝛽𝑘
𝑀2 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

(1 − 𝜇)‖𝑑𝑘‖2 + 𝜇‖𝑔𝑘‖2
 

7- Set 𝑘 = 𝑘 + 1, and go to step2. 

 

4  The Descent Property of a CG New Method(𝐌𝟐) 

The descent property for our proposed new conjugate gradient scheme must be demonstrated 

below, referred to as 𝑀2. In the next, we argue the sufficient descent.  

Proof: 

Starting by the direction of Memoryless (4) 
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dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk                                                                            (27) 

 

𝛽𝑘
𝑀2 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

0.4‖𝑑𝑘‖2 + 0.6‖𝑔𝑘‖2
                                        (28) 

                   where  𝜇 =0.6  

 

Multiply (27) by gk+1 and substituting 𝐻𝑘+1
𝐵𝐹𝐺𝑆 , 𝐻𝑘

𝐵𝐹𝐺𝑆 by (16), (17) in (27) 

 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2+𝑅𝑘−1βk

M2𝑑𝑘
𝑇gk+1                                                              (29) 

By using (IEL) 

𝑑𝑘
𝑇𝑔𝑘+1 = 𝑑𝑘

𝑇𝑔𝑘+1 − 𝑑𝑘
𝑇𝑔𝑘 + 𝑑𝑘

𝑇𝑔𝑘 

= dk
T(gk+1 − gk) + dk

Tgk = dk
Tyk + dk

Tgk < dk
Tyk                                                    (30) 

Substituting (30) in (29) 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2+𝑅𝑘−1βk

M1𝑑𝑘
𝑇yk  

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

0.4‖𝑑𝑘‖2 + 0.6‖𝑔𝑘‖2
𝑅𝑘−1𝑑𝑘

𝑇yk 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 + (

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

0.4‖𝑑𝑘‖2 + 0.6‖𝑔𝑘‖2
) 𝑅𝑘−1𝑑𝑘

𝑇yk 

dk+1
T gk+1 = −𝑅𝑘‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑦𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

0.4‖𝑔𝑘‖2 + 0.6‖𝑔𝑘‖2
𝑅𝑘−1𝑑𝑘

𝑇yk 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 +

‖𝑦𝑘‖‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖|𝑔𝑘+1
𝑇𝑔𝑘| − ‖𝑦𝑘‖|𝑔𝑘+1

𝑇𝑔𝑘|
‖𝑦𝑘‖

‖𝑔𝑘‖2
𝑅𝑘−1𝑑𝑘

𝑇yk 

 

By powell condition we get 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 +

𝑙‖𝑠𝑘‖‖𝑔𝑘+1‖2 + 0.2‖𝑔𝑘+1‖3 + 0.2𝑙‖𝑠𝑘‖‖𝑔𝑘+1‖2

𝑙‖𝑠𝑘‖

‖𝑔𝑘‖2
𝑅𝑘−1𝑑𝑘

𝑇yk 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

𝑙‖𝑠𝑘‖ + 0.2‖𝑔𝑘+1‖ + 0.2𝑙‖𝑠𝑘‖

𝑙‖𝑠𝑘‖‖𝑔𝑘‖2
) ‖𝑔𝑘+1‖2𝑅𝑘−1𝑑𝑘

𝑇yk                        (31) 

dk+1
T gk+1 ≤ −𝑅𝑘‖𝑔𝑘+1‖2 + (

1.2𝑙‖𝑠𝑘‖ + 0.2‖𝑔𝑘+1‖

𝑙‖𝑠𝑘‖‖𝑔𝑘‖2
) ‖𝑔𝑘+1‖2𝑅𝑘−1𝑑𝑘

𝑇yk 

dk+1
T gk+1 ≤ − (𝑅𝑘 − (

1.2𝑙‖𝑠𝑘‖ + 0.2‖𝑔𝑘+1‖

𝑙‖𝑠𝑘‖‖𝑔𝑘‖2
) 𝑅𝑘−1𝑑𝑘

𝑇yk) ‖𝑔𝑘+1‖2 

dk+1
T gk+1 ≤ −𝑐‖𝑔𝑘+1‖2 
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where 

𝑐 > 0. 

 

5 Theorem (Global convergence) 

Assume that Assumption (1) and Equation (1.33) are true, as well as the descent condition. Consider the 

following conjugate gradient scheme: 

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk 

 Where 𝛼𝑘 is calculated based on the strong Wolfe line search condition (SWLS). If the objective function is 

uniformly on set S, then 

 𝑙𝑖𝑚
𝑛→∞

(𝑖𝑛𝑓 ∥ 𝑔𝑘 ∥) = 0 .  

Proof  

dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk 

|dk+1
NEWi = −𝐻𝑘+1

𝐵𝐹𝐺𝑆gk+1+𝐻𝑘
𝐵𝐹𝐺𝑆βk

M2dk| 

‖𝑑𝑘+1‖ = 𝑅𝑘‖𝑔𝑘+1‖ + 𝑅𝑘−1|𝛽𝑘
𝑀2|‖𝑑𝑘‖                                                                       (32) 

We take each part separately and deduce its value: 

𝛽𝑘
𝑀2 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

(1 − 𝜇)‖𝑑𝑘‖2 + 𝜇‖𝑔𝑘‖2
               

                   where  𝜇 =0.6  

|𝛽𝑘
𝑀2 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
|𝑔𝑘+1

𝑇𝑔𝑘| − |𝑔𝑘+1
𝑇𝑔𝑘|

0.4‖𝑑𝑘‖2 + 0.6‖𝑔𝑘‖2
| 

|𝛽𝑘
𝑀2| ≤

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘+1 − 𝑔𝑘‖
‖𝑔𝑘+1‖‖𝑔𝑘‖ − ‖𝑔𝑘+1‖‖𝑔𝑘‖

0.4‖𝑑𝑘‖2 + 0.6‖𝑔𝑘‖2
 

|𝛽𝑘
𝑀2| ≤

‖𝑦𝑘‖‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖2‖𝑔𝑘‖ − ‖𝑦𝑘‖‖𝑔𝑘+1‖‖𝑔𝑘‖
‖𝑦𝑘‖

‖𝑔𝑘‖2
 

|𝛽𝑘
𝑀2| ≤

‖𝑦𝑘‖‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖2‖𝑔𝑘‖ − ‖𝑦𝑘‖‖𝑔𝑘+1‖‖𝑔𝑘‖

‖𝑦𝑘‖‖𝑔𝑘‖2
 

|𝛽𝑘
𝑀2| ≤

𝑙‖𝑠𝑘‖‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖2‖𝑔𝑘‖ − 𝑙‖𝑠𝑘‖‖𝑔𝑘+1‖‖𝑔𝑘‖

𝑙‖𝑠𝑘‖‖𝑔𝑘‖2
 

Let ‖sk‖ = 𝐷 

|𝛽𝑘
𝑀2| ≤

𝑙𝐷𝛾̅2 − 𝛾̅2𝛿 ̅ − 𝑙𝐷𝛾̅𝛿 ̅

𝑙𝐷𝛿 ̅2
 

|𝛽𝑘
𝑀2| ≤

𝑙𝐷𝛾̅(𝛾̅ − 𝛿 ̅) − 𝛾̅2𝛿 ̅

𝑙𝐷𝛿 ̅2
= 𝐸2                                                                                 (33) 

Substituting the (33) in(32) 

‖𝑑𝑘+1‖ = 𝑅𝑘𝛾̅ + 𝑅𝑘−1E2‖dk‖ 

‖𝑑𝑘+1‖ = 𝑅𝑘𝛾̅ + 𝑅𝑘−1E2‖dk‖ 
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Then we get 

0 < ∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
< ∞

∞

𝑘=0
 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2

∞

𝑘=0
≤ ∑

1

𝑐2

(𝑔𝑘
𝑇𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0
< ∞ 

then 

lim
k→∞

inf‖gk‖ = 0. 

6 Numerical examples 

In this section, we use the test problem considered in (Andrei 2008) 

We test and compare standard algorithm with the new memoryless algorithm Maulana1(M1) and 

algorithmMaulana2 (M2), in following manners: 

• Maulana1 & ML-Maulana1with BFGS and Maulana2 & ML-Maulana2with BFGS, and the details in table (1) 

For each of large-scale optimization problems, we have chosen unique test functions. These modified Visual 

FORTRAN CG algorithms are enforced using the Wolfe-Powell line search technique. The Intel(R) Core(TM) 

i7-6700HQ processor in a single laptop was used for all the computational experiments, Core TM, i7-3612QM 

(2.10GHZ) central processing unit, 6GB of random access memory, and Windows 10. 

varying dimensions, arriving at 1,000 variables, representing a large scale for the descent approach. This 

expresses a total of 𝑁𝑥𝑛 {n=dimension and N is the problem} test problem so that it will arrive at N=60 and 

n=1000 for our experience. The number of iterations overextends its limit, which is set to be 1,000. In our 

implementation, the numerical tests were performed on an HP with an XP operating system and using Fortran to 

run the programming for both methods and switch approaches. The discussion of the whole comparison to 

estimate the variation between practices is given by Dolan and More using Matlab codes for this purpose, where 

comparisons are made using curves to demonstrate who is superior to whom based on the comparison's 

foundations and criteria. We listed 40 large scale unconstrained optimization test functions in generalized or 

extended. All methods implemented with Wolfe line search conditions with 𝜌 = 0.0001 and same stopping 

criterion. 

‖𝑔𝑘‖2
2 ≤ 10−6. 

The comparison of the algorithms is based on the number of iterations (NOI), the number of function 

evaluations(NOFG) and (TIME) using Donald and More performance profiles. 

 

Table (6.1). Comparison results by (Maulana1 & ML-Maulana1with BFGS) and (Maulana2 & 

ML-Maulana2 with BFGS). 

Test Problems 

Maulana1 

ML-

Maulana1with 

BFGS 

Maulana2 

ML-

Maulana2with 

BFGS  

NOI/NOFG/ NOI/NOFG/ NOI/NOFG/ NOI/NOFG/ 

TIME TIME TIME TIME 

1-  Trigonometric 95/192/0.21 107/206/0.03 104/221/0.05 102/197/0.04 
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2-  Extended 

Rosenbrock  (CUTE) 
1760/2674/0.36 170/387/0.00 932/1621/0.05 177/416/0.01 

3-  Extended White 

& Holst 
4004/4809/0.35 181/462/0.01 2693/3512/0.09 187/452/0.00 

4-  Extended Beale 357/728/0.01 48/101/0.00 187/471/0.02 48/101/0.00 

5-  Raydan 2 48/133/0.01 12/36/0.02 48/133/0.01 12/36/0.00 

6-  Extended 

Tridiagonal 1 
606/960/0.03 38/85/0.00 195/500/0.02 38/85/0.00 

7-  Extended Three 

Expo Terms 
78/172/0.02 130/2770/0.43 88/172/0.03 105/1930/0.34 

8-  Generalized 

Tridiagonal 2 
2121/2774/0.17 254/432/0.01 2101/2488/0.14 283/487/0.01 

9-  Diagonal 4 247/521/0.02 16/40/0.02 145/397/0.01 16/40/0.02 

10- Diagonal 5 32/112/0.02 12/36/0.00 32/112/0.01 12/36/0.00 

11- Extended 

Himmelblau 
82/206/0.00 38/80/0.01 85/207/0.01 38/80/0.00 

12- Extended PSC1 78/183/0.02 25/62/0.02 79/184/0.03 24/60/0.02 

13- Extended BD1 112/248/0.01 252/402/0.03 104/235/0.01 128/267/0.01 

14- Extended 

Hiebert 
4004/4340/0.16 325/719/0.00 3942/5180/0.15 465/1263/0.03 

15- Extended EP1 26/125/0.00 2/16/0.00 26/125/0.00 2/16/0.00 
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16- Extended 

Tridiagonal  2 
203/386/0.00 209/754/0.03 189/375/0.00 183/610/0.04 

17- ARROWHEAD 

(CUTE) 
382/758/0.08 39/242/0.00 194/538/0.01 36/198/0.00 

18- NONDIA 

(CUTE) 
3533/4053/0.19 41/90/0.00 2602/2848/0.13 43/95/0.00 

19- DQDRTIC 

(CUTE) 
453/854/0.02 381/723/0.02 256/580/0.01 390/732/0.03 

20- DIXMAANA 

(CUTE) 
57/144/0.00 25/58/0.00 57/144/0.01 27/65/0.00 

21- DIXMAANB 

(CUTE) 
56/141/0.00 39/75/0.00 56/141/0.01 38/73/0.02 

22- DIXMAANC 

(CUTE) 
61/152/0.01 51/99/0.00 61/152/0.02 51/99/0.00 

23- Broyden 

Tridiagonal 
370/683/0.03 159/276/0.01 408/817/0.03 171/290/0.01 

24- Tridiagonal 

Perturbed Quadratic 
1332/2345/0.10 53/153/0.02 1223/2524/0.06 53/153/0.02 

25- LIARWHD 

(CUTE) 
1726/2728/0.10 77/178/0.00 1300/1931/0.08 70/164/0.00 

26- DIAGONAL 6 48/133/0.01 12/36/0.02 48/133/0.01 12/36/0.00 

27- DENSCHNA 

(CUTE) 
108/202/0.02 46/89/0.00 90/189/0.01 46/89/0.00 

28- DENSCHNC  

(CUTE) 
207/434/0.03 49/100/0.01 164/387/0.05 44/95/0.00 
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29- DENSCHNB 

(CUTE) 
57/157/0.00 24/60/0.00 57/157/0.01 20/52/0.02 

30- DENSCHNF 

(CUTE) 
91/212/0.01 75/141/0.00 90/206/0.00 81/161/0.00 

31- Extended Block-

Diagonal BD2 
230/453/0.03 44/90/0.01 164/359/0.02 36/84/0.00 

32- Generalized 

quartic GQ1 
57/158/0.01 25/70/0.00 56/156/0.00 25/70/0.00 

33- DIAGONAL 7 40/127/0.01 11/42/0.02 40/127/0.02 11/42/0.00 

34- Full Hessian 45/165/0.02 8/28/0.00 45/165/0.02 8/28/0.00 

35- SINCOS 78/183/0.02 25/62/0.01 79/184/0.02 24/60/0.01 

36- Generalized 

quartic GQ2 
229/442/0.01 177/297/0.00 186/379/0.01 189/316/0.02 

37- ARGLINB 

(CUTE) 
4/12/0.00 0/12/0.00 4/12/0.00 0/12/0.00 

38- FLETCHCR 

(CUTE) 
179/355/0.01 118/226/0.00 157/312/0.02 119/225/0.01 

39- HIMMELBG 

(CUTE) 
32/40/0.01 32/44/0.02 32/40/0.00 32/44/0.00 

40- HIMMELBH 

(CUTE) 
64/164/0.00 24/56/0.00 72/168/0.01 24/56/0.00 

Total 23.292/33.658/2.11 3.354/9.835/0.75 18.391/28.572/1.19 3.370/9.315/0.66 
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Total Work= 

NOI+NOFG+TIME 
59.06 13.939 48.153 13.345 

 

Table(6.2) Percentage performance of (ML-Maulana1with BFGS) against (Maulana1) algorithms 

ML-

Maulana1with 

BFGS 

Maulana1 TOOLS 

14.4% 100% NOI 

29.2% 100% NOFG 

35.6% 100% TIME 

 

                            Table(6.3)  No. of best NOFG test problems  

No. of equal 

NOFG 

In both 

No. of best 

NOFG  

(ML-

Maulana1with 

BFGS) 

No. of best 

NOFG  

(Maulana1) Tools 

2 35 3 NOI 

1 34 5 NOFG 

10 23 7 TIME 

Table(6.4) Percentage performance of (ML-Maulana2with BFGS) against (Maulana2) algorithms 

ML-

Maulana2with 

BFGS  

Maulana2 TOOLS 

18.3% 100% NOI 

32.6% 100% NOFG 

55.5% 100% TIME 

 

                            Table(6.5)  No. of best NOFG test problems  

No. of equal 

NOFG 

In both 

No. of best 

NOFG  

(ML-

Maulana2with 

BFGS) 

No. of best 

NOFG  

(Maulana2) Tools 

1 35 4 NOI 

0 34 5 NOFG 
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6 27 7 TIME 

 

 

Tables(6.1-6.5) show that compared to the baseline Maulana1 CGmethod, the (ML-Maulana1with BFGS) 

algorithm improves upon it by a factor of (14.4%,29.2%, and 35.6%) in terms of NOI, NOFG, and TIME. 

Comparing the (ML-Maulana2with BFGS) algorithm improves upon it by a factor of (18.3%, 32.6%, 55.5%) 

in terms of NOI, NOFG, and CPU, as shown in Table(6.3-6.5), reveals that the (ML-Maulana1and ML-

Maulana2) algorithm achieves the strongest results in NOI, NOFG, and TIME under the accelerated Wolfe-

Powell line search, demonstrating that the (ML-Maulana1and ML-Maulana2) algorithm is significantly more 

effective than the (Maulana1 and Maulana2) CG-algorithm. The (ML-Maulana1and ML-Maulana2) algorithm 

achieves its best performance by making full use of all available resources (including NOI, NOFG, and TIME. 

 

Figure(6.1): Performance profile of (Maulana1 against ML-Maulana1with BFGS) relative to the NOI 
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Figure(6.2): Performance profile of (Maulana1 against ML-Maulana1with BFGS) relative to the NOF 

 

Figure(6.3): Performance profile of (Maulana1 against ML-Maulana1with BFGS) relative to the TIME 

 

Following the tables ((6.1)-(6.5)) and the graphs described in the performance file ((6.1)-(6.3)), the comparative 

findings that we carried out demonstrated a clear superiority in the functions that were chosen for the 

algorithms . 

The nested and memory-enhanced algorithms, which are known as memoryless ( Maulana1-BFGS) and 

memory-enhanced (Maulana2-BFGS), perform better than the classical algorithms (Maulana1 and Maulana2) 

when it comes to conjugate gradient methods. 

Conclusion  

We presented a unique approach that does not require memory and was developed particularly for issues that are 

not limited. The numerical results proved that the suggested algorithms provided higher efficiency in 

comparison to the algorithms ML-Maulana1 with BFGS and ML-Maulana2 with BFGS. The algorithms ML-

Maulana1 with BFGS and ML-Maulana2 with BFGS displayed the best performance. When compared to the 

conventional Mawlana CG algorithm, the numerical results reveal that these novel hybrid approaches are just as 

successful when applied to a selection of testing problems. 
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