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Abstract.

This study introduces a novel family of memoryless nonlinear conjugate gradient algorithms that produce an
appropriate search direction for gradient descent at each iteration. This condition is applicable irrespective of the
exactness of the line search and the convexity of the goal function. We demonstrate that the offered approaches
achieve global convergence for non-convex functions under specific conditions. Numerical findings illustrate
the efficacy of these novel hybrid approaches when applied to specific test issues in comparison to the
conventional Mawlana CG algorithm.

Introduction.
We are interested in the unconstrained optimization problem[1]

minf (x), €Y)
where f: R™ — R is a continuously differentiable function. We denote its gradient Vf

byg. Quasi-Newton methods are known as effective numerical methods for solving problem (1), and they are
iterative methods of the form[2]:

Xpes1 = X + Qpedy (2)
Where xy is the current iteration point and oy is the step length being calculated

By performing a line search, dy is the search direction specified by[3]:

_ 7 9k+1 ifk=0
S if k=1 ®)

where f3is scalar. The differences highlight CG methods in their speed and performance by specifying the
numerical parameter §,., and the set of the effective versions of g, acontained in source [4].

However, it is important to note that the behavior of the following approaches might vary significantly for
general objective functions, even if they may appear equivalent in cases where f is a strictly convex quadratic
function and k is determined using exact line searches (ELS). Wolfe conditions, strong Wolfe conditions, and
strong Wolfe conditions are examples of inexact line searches (ILS) that are hoped for in the convergence
analysis of conjugate gradient methods.

standard Wolfe line search:

f e + ardy) < f(x) + Sapegi dy (4a)
dig(xi + aidy) = adi gy
2. strong Wolfe line search:
{f(xk + aedy) < f(xp) + Saygidy (4b)
|di g (x + ardi)| < —odj gy
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Equations (2) can be represented by:

{f(xk + ady) < f(xp) + S g dye

5
Jdggkﬁd,zg(xk+akdk)ﬁo ( )

Where 0<5<§and5<a<1[5]

Optimization plays a pivotal role in various scientific, engineering, and economic applications. The pursuit

of finding optimal solutions efficiently and accurately has led to the development of numerous mathematical
methods and algorithms. Among these, the Quasi-Newton methods have garnered significant attention due to
their balance of computational efficiency and convergence properties[6].
The traditional Quasi-Newton methods rely on approximating the Hessian matrix, which can be computationally
expensive and memory-intensive for large-scale problems. To address these challenges, researchers have
developed the Memoryless Quasi-Newton Method, which offers a promising alternative by reducing the
memory requirements while maintaining robust performance in optimization tasks[7].

This paper aims to provide a comprehensive overview of the Memoryless Quasi-Newton Method, including its
theoretical foundations, algorithmic structure, and practical applications. By eliminating the need for storing and
updating the Hessian matrix or its approximations, this method significantly reduces the computational burden,
making it particularly suitable for high-dimensional optimization problems.

The Memoryless Quasi-Newton Method represents a significant advancement in optimization techniques,
balancing the need for accurate and efficient optimization with the practical constraints of memory and
computational resources. By leveraging this method, practitioners can tackle large-scale optimization problems
more effectively, opening the door to new possibilities and innovations in various fields[7], [8].

2 New Directions in Memoryless Methodologies
The memoryless variant addresses these issues by not explicitly storing or updating the Hessian matrix or its
approximations.

The mathematical form

A common memoryless Quasi-Newton method is the Memoryless BFGS (Broyden—Fletcher—Goldfarb—Shanno)
algorithm, where the search direction is updated as follows:

A1 = —Vfir1 + Brdy (6)
Here, B), is a scalar that can be determined by various formulas.

Sometimes, conjugate gradient formulas produce the TTCG type.

A1 = —Vfir1 + Brdi — YV )
And y parameter where represent the third term parameter to produce TTCG.

Our approach to the memoryless direction of the three-term type of Hessian matrix commences with a mole of
conjugate gradient formulations. Such as the parameter of conjugation for the researcher Mawlana at certain
times and for revising the formulas of the researcher Mawlana at other times.

2.1 New Maulana Memoryless algorithm

The conjugate gradient and the preconditional conjugate gradient were discussed in the third and fourth chapters
respectively. The inclusion of the two chapters was admirable, nevertheless, it exhibited some slowing down
when dealing with high dimensions problems. Hence, our objective is to decrease memory consumption in the
enhanced algorithms discussed in the preceding two chapters by implementing the notion of memoryless
memory.
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NEWi _ _ [yBFGS
d

BFGS pM1
ki1 = —Higi1 8re1tHe 7By di

If we are discussing the preconditional tendency, Utilizing the concept of memory lessness, we deduct the
Hessian approximation matrix H from the neutral convolution, thereby determining the direction using the

following formula:

ARE = —HEEE g +HEOS B ®

AUE = —HEEE g +HE OB, ©

BFGS __ ykslz' + Skylg' ylz‘yk SkSE
HPSS = (1 -2k TRk ) (g 4 22 2K
Yie Sk Yk Sk) Vi Sk

Xp+1 = X + Qpdy
ay here is close to ensure that
std, > 0, Hence HPESS is +ive definite

di+19k41 <0

After placing | on the matrix H, Where the parameter of conjugacy BM* , BM? given by
Gre+1" (9k+1 1+l Ik — gk)
M1 _ I gs—1ll (10)
Ik (Gre1 — di)
lgre+1 I = ML%HTQH = 1gi+1" 9rel
B2 = lgk+1 — gill (11)
i 1 = wldll* + pllgell?
Where u = 0.6
2.2 Our memoryless algorithms Outline (M1)
For X, € R",0 <€<<1,0<§<:,and <o <1,
Setdo = _go,k =0.
If |lgx |l <€, then stop, otherwise go to the next step.
Compute step size a;, by Wolfe line search (4(a,b))
Let x,41 = X + aidy , if||grs1]l <€, then stop.
Calculate the new search directions by
A" = —HE P g THET B d
Gr+1" (9k+1 ”gk+1” Ik — gk)
M1 _ Ik

. =

9" (Gr1 — di)
Setk = k + 1, and go to step2.

Property (Gilbert and J. Nocedal, 1992)

Suppose that the general conjugate gradient method is used and that 0 < & < ||g, |l < & is achieved in it, then

this method has property if the constants b > 1 and p > 1 are found, for example, for every Kk,
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1Bl < b (12)

sl < p => 16l < 5 (3)
2.1.3 Theorem

Suppose that Assumption (3.3.1) (3.3.2) holds. Any CG method of the
form (2) and (3) with d, is a descent search direction and

ay satisfies (SWP) in (4b). If

1
ZW = 003111_{2 infl|g, |l =0 (14)
k=0 K

(Dai and Liao, 2001)

2.3 The Descent Property of a CG New Method (M1)

The descent property for our proposed new conjugate gradient scheme must be demonstrated

below, referred to as M1. In the next, we argue the sufficient descent.
2.3.1 Theorem (1)

The search direction d,..; and B¥* given in equation

ANE = ~HEE g +HE OB as)
is a descent direction where:

BFGS YSk + SiVi Vi Vi \ SkSk
Hprgs = (1 -2k E Ik ) | (g ) Vi) S
Yie Sk YieSk/ Vi Sk

From Lipschitz condition we have

Iyl = Ulsill

HIsell? + Ulsil1? PlIs 1P\ skl
HBFGS — (I— IIsel |2| el )+ <1+ [ k||2> [ k||2
skl Ulsell? ) Ulsel
21| s |1 lIsI*
HPESS = (1 - + +1
et Ulsg 1% Ulsg 11

1
HEFSS = (1 14 7) - R, (16)

1
HBFGS = (1 —1+ 7) = Ry_s (17)

where I is Diagonal matrix

and

9k+1T (gk+1 - “g:—:”gk - gk)

Ik (Gr+1 — di)

M1 _
K =

Proof: We begin by Multiplying (15) by g, and substituting HZESS,
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dite18ir1 = —Riellgrs1l1?+Ri—1Bi " df 8isa (19)
By using (IEL) property, we get

diGis1 = diGke1r — digi + di g

= dic(8re1 — 81) + dicgr = diyi + dicgie < digyx (20)
Subsuming(20) in (19)

dE+1gk+1 = _Rk”gk+1”2+Rk—1B¥1d£Yk

T R gk+1T <gk+1 - ”“gg;ﬁ” Ik — gk) r
d =—R + R,_.d

k+18k+1 il Gl e Gres — ) k-1qE Yk

) i lgicsall® = %gﬁﬂgk — Jk+19k .
d =—-R + R,_.d

k+18k+1 il il 9T Grrt — 9T dr k-12k Yk
by powell condition
gI€+1gk = 0.2/lgx+111?

0.2 3
lgr+all® + W + 0.2]| gge4I?

di18ke1 = —Rellgrsall® + Ry_1diyx

Ik Gr+1 — i d

By using descent condition

ngdk <0
I gilllgiessll® + 021 gps1lI* + 021l gl G111
ll gl
di18ke1 < —RiellGesa I + T £ Ri—1diyk
Ik Jr+1

lgill + 0.2]|gk41 Il + 0.2]I gl
Igicllgi” Gresr

1.2][gicll + 0.2[[gge41 ]l
T
lgillgi” Gr+r

dEHng < _Rk”9k+1”2 + ( ) ||gk+1||2Rk—1d£Yk

dE+1gk+1 < _Rk”gk+1”2 + < ) ||gk+1||2Rk—1d£Yk (21)

1.2l gkl + 0.2[[gge41 I
||gk||9kT9k+1

1.2 + 0.2
s—(Rk+< gl . llgresall
lgillgr” Grs1

T 2 2 T
diy18k+1 < —RillGraall” + ( )||9k+1|| Ry-1djyx

dE+1gk+1 )Rk—ld};y}(> ||gk+1||2

T
diy18k+1 < _C“gk+1"2
Where

1.2[|gxll + 0.2]|gx44 |l
Igillgr” Grs1

c=Rk+< )Rk_ld,fyk , c>0
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3 Global convergence study

We will show that the Memoryless CG technique with ¥ globally converges. For the suggested
new algorithm's convergence, we need to make some assumptions.

3.1 Assumption (1)
Suppose f in the level set below, is bound
K ={x € R":¢(x) < ¢(xy)}; in some initial point.

@ is Its gradient is Lipschitz constant and it is continuously differentiable, there exists L > 0 in the sense that
[91:
Ig(x) —g) I< Lllx —yllvx,y € N (22)

Under assumption(1), on the other hand, it is obvious that a positive constant M exists

lx|| < M,vx €K (23)
IVf(x) ISy, vx €K (24)
3.1.1 Lemma

Assume Assumption (1) and Equation (18) are correct. Take any conjugate gradient approach
between (2) and (3), where d,, is the descent direction and «;, is the SW.L.S. If

Z 1

_ =00
2

e Il dyyq |l

then we have
,{il?oinf Il gx I=0
More details can be found in [10] [11].

3.1.2 Theorem (2)

Assume that Assumption (1) and Equation (2) are true, as well as the descent condition. Consider the following
conjugate gradient scheme:

NEWi __ BFGS BFGS pM1
diir = —Hpi" 8rerHHE 7By di

Where «a, is calculated based on the strong Wolfe line search condition (SWLS); for more details see[12][13].
If the objective function is uniformly on set S, then

Tlli_t?o(inf lgel)=0.

Proof
ANE = —HEE g HHEOOBY 0
ldis1ll = RillGiesll + Rie—1 1Bl dicl (25)

We take each part separately and deduce its value:

9k+1T (gk+1 - ”Z::” Ik — gk)

i =
Ik (Gre+1 — di)
2 _ ||9k+1||2 T
ﬂMl _ lgr+1ll Mgl Ik — Jk+19k
M1 =

Ik Gr+1 — i Ty
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2 _ ||gk+1||2 T
|[;M1| _ ”gk+1” ”gk” Ik gk+1gk
g Ix T Gx+1 — gxTdy
2
gl - % 1gell = s lllgel
1B <
P gl grsall = llgilllldell
o) < lgkeallgil
T g Mgl = g lllldy
—76
1B < —_;—
¥ =0 |ldll
—76
1B < —;_
=8 (lldell = 7)
%
IpM| < ——— =FE (26)
Pl s qgr—y = 5

Substituting the (26) in(25)
ldic+1ll = RV + Rie—1 Ex lldic |
ldic+1ll = RV + R E lldicll

Then we get
© (grd)?
0<Z < oo
k=0 ldill?
o 4 o 1 T 2
Z gl SZ 1 Gedi)” _
k=0 lld|I? k=0C? |ldll?
then

Lim infllg,ll = 0.

3.1.30ur memoryless algorithms Outline (M2)

For X, € R",0 <€<<1,0<§ <~ ,and 6 <o <1,

Setdo = —go,k=0.

If |gx |l <€, then stop, otherwise go to the next step.

Compute step size a; by Wolfe line search (4(a,b)).

Let xp41 = X + aidy , if||grs1ll <€, then stop.

Calculate the new search directions by

NEWi _ BFGS BFGS M2
dgs1 = —Hpi1" 8rer+HHi 7By “di

__MNgraall T, | — T
”gk+1 _gk” |gk+1 gkl |gk+1 gkl

(1 = wlldill? + ullgell?

o ||9k+1||2
Br® =

Setk = k + 1, and go to step2.

4 The Descent Property of a CG New Method(M2)

The descent property for our proposed new conjugate gradient scheme must be demonstrated
below, referred to as M2. In the next, we argue the sufficient descent.

Proof:

Starting by the direction of Memoryless (4)
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ARE = —HEEE g HET B, @)
lgr+1ll* = ML%HTQH = |Gk+1" 9|

gz = lgs+1 — geell (28)

* 0.4[|d |I? + 0.6]1 g |I?

where u =0.6
Multiply (27) by gy, and substituting HEESS, HEFGS by (16), (17) in (27)
dE+1gk+1 = _Rk”gkﬂ”2+Rk—181b<42dl€gk+1 (29)
By using (IEL)
digk+1 = diGr+1 — di g + dic g
= dic(8ke1 — &) + dicgk = digyi + diigye < digyi. (30)
Substituting (30) in (29)
di418ke1 = —Ricllgiera IP+Ri—1 B "y
) gl - o2l g o < gl
d = —R,|l [|1% + Ry_.d
k+1gk+1 k gk+1 04”dk”2 + 06”gk”2 k—1 kyk

T , lgr+all? = % |Gir1" Gl = |Grs1" il ;
d = —R.|l [ + Ry_.d

k+1gk+1 k gk+1 04||dk”2 + 06”gk”2 k-1 RYk

i N T R A A
d = —R,|l [ + Ry_.d

k+18k+1 kllGk+1 04’”gk”2 + 06”gk”2 k-1Ck Yk

el g ll* = ||9k+1|||||gkﬁ1Tgk| =y lllgse+1" gl
dit18ke1 < —Riell s 1> + T i > Ry_1diyx
gl
By powell condition we get
Ulsellllgresall® + 0.2 gr+a [ + 0215 |1l g1 I
Ulsl
dit18ke1 < —Riell g1 + £ > Ri—1djyx
lgell
Ulsill + 0.21|gges1 Il + 0215 |l

dE+1gk+1 S _Rk“gk+1”2 + ( l||Sk|||T;k||2 ”gk+1”2Rk—1d£Yk (31)

1205l + 0.2]|gres1 1l
Uls g I?

di 4181 < —Rillgraa lI* + ( ) | ses1 1> Rie— 1Ry

1.2U|si |l + 0.2]| grsa l
Uls g I?

dE+1gk+1 <- (Rk - ( )Rk—1d£Yk) ||gk+1||2

dEHng < —c||gk+1||2
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where

c>0.

5 Theorem (Global convergence)

Assume that Assumption (1) and Equation (1.33) are true, as well as the descent condition. Consider the

following conjugate gradient scheme:

NEWi _ _ [7BFGS BFGS M2
diy1 = —Hiy1” 8re1+HHi 7By “di

Where a, is calculated based on the strong Wolfe line search condition (SWLS). If the objective function is

uniformly on set S, then

igg@nfllgk”)==0-

Proof

NEWi _ BFGS BFGS oM2

A1 = —Hpi" 8rerHHE 7By “di
NEWi _ BFGS BFGS M2

|dNEV! = —HETSS grepr +HEFOS B2 |

ldis1ll = Rillgrerall + Rie—1 1B 1l il
We take each part separately and deduce its value:

o ”gk+1”2 - %WHJQH - |gk+1Tgk|
P = (1 - DIl + allgel?
where u =0.6
gl - M 19ks1" 0kl — 19k Gl
b= 0411412 + 0.611gx I
gl - M s Mlgell = gas il
18] <
P 0.411dy 1% + 0.6]1gxll?
Uyl g I? = Ngssllgell = 1l gess gl
A
| M2| S
P 192
ey < DGl = g gl = g Mg
= i lllgel
o) < sl = g 12 Ngull = sl gl
l= sl gxl?
Let [lsill = D
S2 _ o2F o
B2 < Dy —vy 8_ — IDyé
k1= D& 2
— —_ r —2_
|BM2| <ZD)/()/—6_)—)/ 6 - E
k1= ID5 2 z

Substituting the (33) in(32)
lldk+1ll = RV + Ry—1 Ex |l dll
ldk+1ll = RV + Ry—1 Ex || dll
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Then we get

o) Td 2
<Z (9 kz <
k=0 [ldill

II*

[e] ) 1 Td 2
Z lgx _< Z _z(gk kz <o
k=0 [ldll k=0C¢? |ldll

then

llim infl|gk|| = 0.

Numerical examples
In this section, we use the test problem considered in (Andrei 2008)

We test and compare standard algorithm with the new memoryless algorithm Maulanal(M1) and
algorithmMaulana2 (M2), in following manners:

Maulanal & ML-Maulanalwith BFGS and Maulana2 & ML-Maulana2with BFGS, and the details in table (1)

For each of large-scale optimization problems, we have chosen unique test functions. These modified Visual
FORTRAN CG algorithms are enforced using the Wolfe-Powell line search technique. The Intel(R) Core(TM)
i7-6700HQ processor in a single laptop was used for all the computational experiments, Core TM, i7-3612QM
(2.10GHZ) central processing unit, 6GB of random access memory, and Windows 10.

varying dimensions, arriving at 1,000 variables, representing a large scale for the descent approach. This
expresses a total of Nxn {n=dimension and N is the problem} test problem so that it will arrive at N=60 and
n=1000 for our experience. The number of iterations overextends its limit, which is set to be 1,000. In our
implementation, the numerical tests were performed on an HP with an XP operating system and using Fortran to
run the programming for both methods and switch approaches. The discussion of the whole comparison to
estimate the variation between practices is given by Dolan and More using Matlab codes for this purpose, where
comparisons are made using curves to demonstrate who is superior to whom based on the comparison's
foundations and criteria. We listed 40 large scale unconstrained optimization test functions in generalized or
extended. All methods implemented with Wolfe line search conditions with p = 0.0001 and same stopping
criterion.

llgill3 < 107°.

The comparison of the algorithms is based on the number of iterations (NOI), the number of function
evaluations(NOFG) and (TIME) using Donald and More performance profiles.

Table (6.1). Comparison results by (Maulanal & ML-Maulanalwith BFGS) and (Maulana2 &
ML-Maulana2 with BFGS).

ML- ML-
Maulanal Maulanalwith Maulana?2 Maulana2with
BFGS BFGS
Test Problems
NOI/NOFG/ NOI/NOFG/ NOI/NOFG/ NOI/NOFG/
TIME TIME TIME TIME
1- Trigonometric 95/192/0.21 107/206/0.03 104/221/0.05 102/197/0.04
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2- Extended

Rosenbrock (CUTE) | 1760/2674/0.36 170/387/0.00 932/1621/0.05 177/416/0.01
Z: H(')El’gtte”ded White | 004/4809/0.35 181/462/0.01 2693/3512/0.09 187/452/0.00
4- Extended Beale | 357/728/0.01 48/101/0.00 187/471/0.02 48/101/0.00
5- Raydan 2 48/133/0.01 12/36/0.02 48/133/0.01 12/36/0.00
& Extended | 606/960/0.03 38/85/0.00 195/500/0.02 38/85/0.00
Tridiagonal 1

7~ Extended Three | ;0,125 o) 130/2770/0.43 | 88/172/0.03 105/1930/0.34
Expo Terms

8- Generalized | »15 /57741017 254/432/0.01 2101/2488/0.14 283/487/0.01
Tridiagonal 2

9- Diagonal 4 247/521/0.02 16/40/0.02 145/397/0.01 16/40/0.02
10- Diagonal 5 32/112/0.02 12/36/0.00 32/112/0.01 12/36/0.00
11- Extended | g, 506/0.00 38/80/0.01 85/207/0.01 38/80/0.00
Himmelblau

12- Extended PSC1 | 78/183/0.02 25/62/0.02 79/184/0.03 24160/0.02
13- Extended BD1 | 112/248/0.01 252/402/0.03 104/235/0.01 128/267/0.01
h‘:{;bert Extended | 104/4340/0.16 325/719/0.00 3942/5180/0.15 465/1263/0.03
15- Extended EP1 | 26/125/0.00 2/16/0.00 26/125/0.00 2/16/0.00
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16- Extended | ,43/386/0.00 200/754/0.03 | 189/375/0.00 183/610/0.04
Tridiagonal 2
17- ARROWHEAD | 545 756/0 08 39/242/0.00 104/538/0.01 36/198/0.00
(CUTE)
18- NONDIA | 553314053019 | 41/90/0.00 2602/2848/0.13 | 43/95/0.00
(CUTE)
19- DQDRTIC | 453/854/0.02 381/723/0.02 | 256/580/0.01 390/732/0.03
(CUTE)
20-  DIXMAANA | 52.144/0.00 25/58/0.00 57/144/0.01 27/65/0.00
(CUTE)
21-  DIXMAANB | 5e0141/0.00 39/75/0.00 56/141/0.01 38/73/0.02
(CUTE)
22-  DIXMAANC | 6111501001 51/99/0.00 61/152/0.02 51/99/0.00
(CUTE)
23- Broyden | +-6/683/0.03 159/276/0.01 408/817/0.03 171/290/0.01
Tridiagonal
24- Tridiagonal

nal | 133212345010 | 53/153/0.02 1223/2524/0.06 | 53/153/0.02
Perturbed Quadratic
?&TE) LIARWHD | 12569728/010 | 77/178/0.00 1300/1931/0.08 | 70/164/0.00
26- DIAGONAL 6 | 48/133/0.01 12/36/0.02 48/133/0.01 12/36/0.00
27-  DENSCHNA | 1615021002 46/89/0.00 90/189/0.01 46/89/0.00
(CUTE)
fngE)DENSCHNC 207/434/0.03 49/100/0.01 164/387/0.05 44/95/0.00
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29-  DENSCHNB | o7/157/0.00 24/60/0.00 57/157/0.01 20/52/0.02
(CUTE)

30-  DENSCHNF 1 g/519/0.01 75/141/0.00 90/206/0.00 81/161/0.00
(CUTE)

31- Extended Block- | »55104/0 03 44/90/0.01 164/359/0.02 36/84/0.00
Diagonal BD2

32-  Generalized | o150/ 0 25/70/0.00 56/156/0.00 25/70/0.00
quartic GQ1

33- DIAGONAL 7 | 40/127/0.01 11/42/0.02 40/127/0.02 11/42/0.00
34- Full Hessian 45/165/0.02 8/28/0.00 45/165/0.02 8/28/0.00
35- SINCOS 78/183/0.02 25/62/0.01 79/184/0.02 24/60/0.01
36-  Generalized | »,q,145/0 01 177/297/0.00 186/379/0.01 189/316/0.02
quartic GQ2

37- ARGLINB

QuTE) 4/12/0.00 0/12/0.00 4/12/0.00 0/12/0.00
38-  FLETCHCR | 426/355/0.01 118/226/0.00 | 157/312/0.02 119/225/0.01
(CUTE)

39-  HIMMELBG

cuTE) 32/40/0.01 32/44/0.02 32/40/0.00 32/44/0.00
40-  HIMMELBH | ¢//164/0.00 24/56/0.00 72/168/0.01 24/56/0.00
(CUTE)

Total 23.202/33.658/2.11 | 3.354/9.835/0.75 | 18.391/28.572/1.19 | 3.370/9.315/0.66
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Total Work=

NOI+NOFG+TIME 59.06

13.939

48.153

Table(6.2) Percentage performance of (ML-Maulanalwith BFGS) against (Maulanal) algorithms

TOOLS Maulanal | ML-
Maulanalwith
BFGS

NOI 100% 14.4%

NOFG 100% 29.2%

TIME 100% 35.6%

Table(6.3) No.

of best NOFG test problems

No. of best | No. of best | No.of equal
NOFG NOFG NOEG
Tools -
(Maulanal) (ML _ In both
Maulanalwith
BFGS)
NOI 3 35 2
NOFG 5 34 1
TIME 7 23 10

Table(6.4) Percentage performance of (ML-Maulana2with BFGS) against (Maulana2) algorithms

TOOLS Maulana2 | ML-
Maulana2with
BFGS

NOI 100% 18.3%

NOFG 100% 32.6%

TIME 100% 55.5%

Table(6.5) No.

of best NOFG test problems

No. of best | No. of best | No.ofequal
NOFG NOFG NOEG
Tools -
(Maulana2) (ML _ In both
Maulana2with
BFGS)
NOI 4 35 1
NOFG 5 34 0
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TIME 7 27 6

Tables(6.1-6.5) show that compared to the baseline Maulanal CGmethod, the (ML-Maulanalwith BFGS)
algorithm improves upon it by a factor of (14.496,29.2%, and 35.6%0) in terms of NOI, NOFG, and TIME.
Comparing the (ML-Maulana2with BFGS) algorithm improves upon it by a factor of (18.3%0, 32.6%, 55.5%)
in terms of NOI, NOFG, and CPU, as shown in Table(6.3-6.5), reveals that the (ML-Maulanaland ML-
Maulana?2) algorithm achieves the strongest results in NOI, NOFG, and TIME under the accelerated Wolfe-
Powell line search, demonstrating that the (ML-Maulanaland ML-Maulana2) algorithm is significantly more
effective than the (Maulanal and Maulana2) CG-algorithm. The (ML-Maulanaland ML-Maulana2) algorithm
achieves its best performance by making full use of all available resources (including NOI, NOFG, and TIME.

Rate of convergence based on NOI

Maulana1 7
—+—— ML-Maulana1 with BFGS
= — Maulana2 B
—=— ML-Maulana2 with BEGS

3 4 5 6

Rate of convergence based on NOF

Maulana1

—+—— ML-Maulana1 with BFGS
-Maulana2

—— ML-MaulanaZ2 with BFGS

0 1 2 3 4 5
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Figure(6.2): Performance profile of (Maulanal against ML-Maulanalwith BFGS) relative to the NOF
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Figure(6.3): Performance profile of (Maulanal against ML-Maulanalwith BFGS) relative to the TIME

Following the tables ((6.1)-(6.5)) and the graphs described in the performance file ((6.1)-(6.3)), the comparative
findings that we carried out demonstrated a clear superiority in the functions that were chosen for the
algorithms.

The nested and memory-enhanced algorithms, which are known as memoryless ( Maulanal-BFGS) and
memory-enhanced (Maulana2-BFGS), perform better than the classical algorithms (Maulanal and Maulana2)
when it comes to conjugate gradient methods.

Conclusion

We presented a unique approach that does not require memory and was developed particularly for issues that are
not limited. The numerical results proved that the suggested algorithms provided higher efficiency in
comparison to the algorithms ML-Maulanal with BFGS and ML-Maulana2 with BFGS. The algorithms ML-
Maulanal with BFGS and ML-Maulana2 with BFGS displayed the best performance. When compared to the
conventional Mawlana CG algorithm, the numerical results reveal that these novel hybrid approaches are just as
successful when applied to a selection of testing problems.
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