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Abstract 

With the rapid advancement of phased array radar, the guidance and anti-jamming capabilities of phased array radar 

seekers have been further enhanced. Traditional radar jamming decision-making methods are no longer applicable in 

electronic warfare. Thus, radar jamming decision-making methods based on reinforcement learning have emerged, which can 

effectively address the issues of poor performance and low efficiency of traditional jamming approaches. Given the extremely 

high cost and poor repeatability of physical experiments, the construction of simulation models is frequently adopted for 

simulation experiments. Unlike most other studies on radar jamming decision-making that employ functional-level simulation 

modeling, this paper adopts signal-level simulation of radar jamming decision-making, presenting a more realistic and 

intuitive reflection of the entire process of interference equipment interfering with the missile terminal guidance. Through the 

signal-level simulation of phased array radar terminal guidance and the introduction of reinforcement learning algorithms, 

this study investigates how the interference equipment should act to maximize the interference benefit. Through simulation 

experiments, on the one hand, it is demonstrated that the reinforcement learning algorithm can improve the interference effect. 

On the other hand, the accuracy of the signal-level simulation model is verified. 

Keywords—phased array radar, radar jamming decision-making, signal-level simulation, reinforcement learning 

I. INTRODUCTION 

In the increasingly complex electronic warfare environment characterized by rapid technological advancements and 

sophisticated adversarial tactics, traditional radar systems that rely on a single working mechanism and simplistic beam variations 

are becoming inadequate[1], [2]. These conventional radars struggle to meet the diverse operational requirements of modern 

warfare scenarios, which demand high levels of adaptability and precision in detection capabilities . Phased array radar represents 

a significant evolution in radar technology. This type of radar system is designed to dynamically alter its real-time beam direction 

by adjusting the emitted signals’ phase from multiple antennas arranged in an array configuration [3]. The ability to electronically 

steer the radar beam allows for faster target acquisition and tracking compared to mechanical scanning methods. Consequently, 

phased array radars are often referred to as electronic scanning array (ESA) radars due to their advanced electronic control 

mechanisms. Currently, phased array radar has undergone substantial development, evolving into multifunctional systems 

capable of engaging with various targets across extensive ranges while maintaining high reliability under different operational 

conditions. These features make them indispensable components within advanced weapon systems utilized by military forces 

worldwide. Their versatility enables simultaneous engagement with multiple threats—ranging from aircraft and missiles to 

ground-based assets—thereby enhancing situational awareness on the battlefield. Traditional methods employed for making 

interference decisions regarding these radars include techniques based on template matching, game theory approaches that 

analyze strategic interactions between competing entities, and reasoning-based methodologies that utilize logical frameworks 

[4]. However, all these conventional strategies necessitate a considerable amount of prior data for effective decision-making 

support. They often fall short when faced with multifunctional radars operating within unknown or unpredictable environments 

where historical data may be limited or irrelevant. In contrast, interference decision-making methods grounded in reinforcement 

learning offer distinct advantages over traditional approaches. Reinforcement learning algorithms possess inherent cognitive 

abilities that allow them not only to learn from past experiences but also adaptively explore optimal interference strategies 

through continuous trial-and-error processes. By leveraging feedback from previous actions taken during operations against 
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dynamic adversarial tactics, these algorithms can refine their decision-making capabilities over time without requiring exhaustive 

datasets upfront. 

Q. Xing applied reinforcement learning to intelligent radar confrontation, and the experimental results indicated that 

reinforcement learning possesses excellent adaptive capabilities in one-on-one confrontations [5]. B. K. Zhang constructed a 

cognitive interference decision model from the perspective of signal processing, updated the types of interference libraries, 

analyzed the assessment of interference effects, and played a significant role in the cognitive confrontation of multifunctional 

radars [6]. S. Y. Zhang combined game theory with reinforcement learning and proposed a multi-agent reinforcement learning 

algorithm based on equilibrium, which could effectively address the issue of radar observation time scheduling and further 

demonstrate the effectiveness of reinforcement learning in handling interference decision problems [7]. F. Slimeni proposed an 

interferer scheme featuring spectrum sensing, offline training, and learning functions. The RL-based interference decision 

algorithm was simulated on a universal software radio platform. The results indicated that the interferer can effectively learn and 

interfere without prior information from users [8]. L. Yunjie and X. Qiang introduced prior knowledge based on reinforcement 

learning and improved the performance of reinforcement learning in radar interference decision-making [9]. X.Qiang,Z.Wei-

gang,and J.Xin proposed an adaptive reinforcement learning algorithm that can solve the interference problem of radars with 

unknown working modes [10]. W. G. Zhu, confronted with the increasing working modes and states of radars, adopted the deep 

reinforcement learning approach and effectively addressed the issue of low decision-making efficiency of reinforcement learning 

[11]. 

Most of the previous studies on radar interference decision-making methods have employed functional-level simulation 

approaches, merely simulating the amplitude information of signal transmission, targets, echoes, clutters, and interference signals 

or presenting a straightforward description of the radar’s working status without outputting genuine radio frequency and video 

signals. It has the typical merits of simplicity, practicality, and strong real-time processing ability. However, it neglects numerous 

details inherent in waveforms and signal processing, fails to accurately depict the dynamically changing interference 

confrontation environment created by various electronic interference equipment of both the friendly and hostile sides, and is even 

less capable of comprehensively and quantitatively elaborating the mechanism of action of various interference factors on the 

radar system. This paper adopts the coherent video signal analysis method, with the background of the interference equipment 

on ships countering anti-ship missile attacks, and simulates the entire process of radar interference decision-making from the 

signal-level perspective, providing a novel idea for subsequent studies on radar interference decision-making. 

II. MODELING OF PHASED ARRAY RADAR SEEKER 

A. Signal transmission and signal reception model 

1) Antenna model 

The general antenna radiation pattern function is shown below: 

𝐹(𝛼, 𝛽) = |
sin (𝜋

𝛼
𝜃𝛼

)

𝜋
𝛼
𝜃𝛼

| ⋅ |

sin (𝜋
𝛽
𝜃𝛽

)

𝜋
𝛽
𝜃𝛽

|  (1) 

where 𝛼 and 𝛽 represent the azimuth and elevation offsets between the target and the antenna center, expressed in radians; 𝜃𝛼 

and 𝜃𝛽 represent the azimuth and elevation beamwidths of the antenna, also expressed in radians. The beamwidth parameter 

can be estimated directly from the antenna size as follows: 

𝜃𝛼,𝛽 =
𝜆

𝐿𝛼,𝛽

(2) 

where 𝐿𝛼  and𝐿𝛽  are the lengths of the antenna in the azimuth and elevation dimensions, and 𝜆  is the wavelength of the 

transmitted signal. In phased array antenna mode, the beamwidth will widen if the antenna spacing cannot meet the requirement 

of 𝛥𝑑 ≤ 𝜆/2. Meanwhile, the antenna gain can also be estimated simply by the antenna size as follows: 

𝐺 =
4𝜋𝐿𝛼𝐿𝛽

𝜆2
(3) 
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In the three-dimensional orientation, the amplification power varies in different directions. The angular information of the 

antenna pointing to the target can be solved by the sum-and-difference beam method. The directional patterns of the four sub-

beams are respectively recorded as: 

𝑂1: 𝐹1(𝛼, 𝛽) = 𝐺(−𝛥1, 𝛥2, 𝛼, 𝛽, 𝛼0, 𝛽0) (4) 

𝑂2: 𝐹2(𝛼, 𝛽) = 𝐺(𝛥1, 𝛥2, 𝛼, 𝛽, 𝛼0, 𝛽0) (5) 

 

𝑂3: 𝐹3(𝛼, 𝛽) = 𝐺(−𝛥1, −𝛥2, 𝛼, 𝛽, 𝛼0, 𝛽0) (6) 

𝑂4: 𝐹4(𝛼, 𝛽) = 𝐺(𝛥1, −𝛥2, 𝛼, 𝛽, 𝛼0, 𝛽0) (7) 

where 𝛼0and 𝛽0 are respectively the center pointing of the phased array antenna (coordinates in the coordinate system of the 

array surface azimuth), 𝛼 and𝛽 are the coordinates in the coordinate system of the pointing azimuth and 𝛥1and 𝛥2 are also the 

coordinates in the coordinate system of the pointing azimuth. Then, the sum beam pattern is as follows: 

𝐹𝛥1(𝛼, 𝛽) = 𝐹1(𝛼, 𝛽) + 𝐹2(𝛼, 𝛽) + 𝐹3(𝛼, 𝛽) + 𝐹4(𝛼, 𝛽) (8) 

The azimuthal difference beam direction pattern is: 

𝐹𝛥1(𝛼, 𝛽) = 𝐹1(𝛼, 𝛽) + 𝐹2(𝛼, 𝛽) − 𝐹3(𝛼, 𝛽) − 𝐹4(𝛼, 𝛽) (9) 

The elevation-azimuth direction beam pattern is: 

𝐹𝛥2(𝛼, 𝛽) = 𝐹1(𝛼, 𝛽) − 𝐹2(𝛼, 𝛽) + 𝐹3(𝛼, 𝛽) − 𝐹4(𝛼, 𝛽) (10) 

Furthermore, the proportional coefficient needed for angle error signal resolution in the angle measuring module can be 

obtained as follows: 

𝜇1 =
𝐹𝛴(0,0)

𝑑𝐹𝛥1

𝑑𝛼
|
𝛼=0,𝛽=0

, 𝜇2 =
𝐹𝛴(0,0)

𝑑𝐹𝛥2

𝑑𝛽
|
𝛼=0,𝛽=0

(11)
 

2) Signal transmission modeling 

To accurately simulate the strike process of the terminal guidance of a radar seeker in complex electromagnetic 

environments, signal-level simulation of the radar seeker is necessary. Coherent video signal simulation technology is a type 

of signal-level simulation. This technology simulates the entire process of signal reception and processing through video 

signals[12]. The time-domain and frequency-domain characteristics of radar signals can typically be expressed using analytical 

mathematical expressions, as shown in equation 1, thereby generating the signal’s I and Q channel signals. 

𝑆(𝑡) = 𝐴(𝑡) ⋅ 𝑒
𝑗(𝜔

0
𝑡𝜙𝜙(𝑡))

= [𝐴𝑐(𝑡) + 𝑗𝐴𝑠(𝑡)] ⋅ 𝑒
𝑗𝜔

0
𝑡

= 𝑢(𝑡)𝑒
𝑗2𝜋𝑓

0
𝑡

(12)

 

For the envelope 𝑎(𝑡) of the real signal 𝑥(𝑡), the envelope of its exponential signal 𝑆(𝑡) can be depicted as: 

𝑢(𝑡) = 𝑎(𝑡) ⋅ 𝑒𝑗𝜃(𝑡) (13) 

Therefore, the signal 𝑥(𝑡)can be written as: 

𝑥(𝑡) = 𝑎(𝑡)cos[2𝜋𝑓0𝑡 + 𝜃(𝑡)] =
1

2
[𝑆𝑒(𝑡) + 𝑆𝑒

∗(𝑡)]

= Re[𝑆𝑒(𝑡)] (14)

 

Meanwhile, the signal 𝑥(𝑡) can also be written as: 

𝑥(𝑡) = 𝑎𝑙(𝑡)cos(2𝜋𝑓0𝑡) − 𝑎𝑄(𝑡)sin(2𝜋𝑓0𝑡) (15) 
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𝑎𝐼(𝑡) = 𝑎(𝑡)cos𝜃(𝑡) (16) 

 

𝑎𝑄(𝑡) = 𝑎(𝑡)sin𝜃(𝑡) (17) 

 

In the above formula, 𝑎𝐼  and 𝑎𝑄 are the in-phase and quadrature components of the baseband signal, respectively. This is the 

signal sampling sequence that we need to generate. Correspondingly, when the carrier frequency is eliminated through 

downconversion (quadrature demodulation) processing to obtain the zero intermediate frequency (coherent video) signal as: 

𝑆0(𝑡) = 𝐴(𝑡) ⋅ 𝑒𝑗𝜙(𝑡) = 𝐴𝑐(𝑡) + 𝑗𝐴𝑠(𝑡) (18) 

When using full digital simulation, the coherent video signal is sampled at a certain sampling rate, thus forming a sequence of 

coherent video signals (complex signals) that can be represented as follows: 

𝑠[𝑛] = 𝑠𝑟[𝑛] + 𝑗𝑠𝑖[𝑛] (19) 

Typical phased array radar transmits signals using an LFM (linear frequency modulation) signal pattern. The radar 

transmitted signal is represented by a complex signal as follows: 

𝑆𝑡(𝑡) = √
2𝑃𝑡

4𝜋𝐿𝑡

𝑔𝑣𝑡(𝜃)𝑣(𝑡) ⋅ 𝑒𝑗𝜔𝑐𝑘𝑡𝜔𝑐𝑘 (20) 

where 𝜔𝑐𝑘  denotes the current pulse carrier frequency, 𝑃𝑡  indicates the peak power of the transmitter, 𝐿𝑡  stands for the 

combined loss of the transmitter, 𝑔𝑣𝑡(𝜃) represents the transmitting antenna pattern (voltage gain), and 𝑣(𝑡) represents the 

complex modulation function as follows: 

𝑣(𝑡) = Rect (
𝑡

𝑇𝑝

) ⋅ exp (𝑗𝜋𝐹𝑚𝑡2) (21) 

the rectangular function is defined as: 

Rect(𝑡) = {
1, 𝑡 ∈ (0,1)

0,  else 
(22) 

where 𝑇𝑝 represents the pulse width, and 𝐹𝑚 represents the frequency modulation slope. Based on the above formulas, the 

coherent video signal pattern adopted in the system is as follows: 

𝑠𝑡(𝑡) = √
𝑃𝑡

4𝜋𝐿𝑡

𝑔𝑣𝑡(𝜃) ⋅ Rect (
𝑡

𝑇𝑝

) ⋅ exp (𝑗𝜋
𝐵𝑊𝑟𝑔

𝑇𝑝

𝑡2) (23) 

3) Receiving Signal Model 

The received signal mainly consists of target echoes, interference signals, various types of clutter, and receiver noise. This 

paper mainly considers the aspects of target echoes and interference signals. With respect to a specific transmitted pulse, the 

RF signal received by the radar can be represented as follows: 

𝑟𝑅𝐹(𝑡) = 𝑆𝑅𝐹(𝑡) + 𝐽𝑅𝐹(𝑡) + 𝑛𝑅𝐹(𝑡) (24) 

where 𝑆𝑅𝐹(𝑡) represents the echo signal received after the transmitted pulse is reflected by the target, 𝐽𝑅𝐹(𝑡) represents the 

received interference signal, which is the combined interference signal formed by various active interference and passive 

interference, and 𝑛𝑅𝐹(𝑡) represents the receiver noise. The receiver noise is Gaussian-limited white noise, which means that in 

the radar receiver’s passband, the power spectral density of the noise is uniform, and its amplitude follows a Rayleigh 

distribution. The variance of the noise can be calculated from the receiver noise coefficient and the receiver bandwidth. In the 

simulation, a sample function of a Gaussian process can be used to represent it specifically, and the band-limited noise signal 

is represented as: 

𝑛(𝑡) = Re[𝑛̃(𝑡) ⋅ 𝑒𝑗𝜔𝑐𝑡] (25) 
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Therefore, in coherent video simulation, the noise at the receiver can be represented as: 

𝑛̃(𝑡) = 𝑛𝑑(𝑡) − 𝑗𝑛𝑞(𝑡) (26) 

In this model, 𝑛𝑑(𝑡) and𝑛𝑞(𝑡) are independent Gaussian random processes with zero mean and variance 𝜎𝑁
2. The variance of 

the noise 𝜎𝑁
2 can be calculated from the receiver noise coefficient 𝑁𝐹 and receiver bandwidth 𝛥𝑓 as follows: 

𝜎𝑁
2

= 𝑘𝑇0𝑁𝐹𝛥𝑓 (27) 

where 𝐾 is the Boltzmann constant, and 𝑇0 is the reference temperature of the receiver, which 𝑇0 = 290 K. Combining the 

target echo signal and the receiver thermal noise signal, we finally obtain the radar received signal as: 

𝑟(𝑡) = Rect(
𝑡 −

2𝑅
𝑐

𝑇𝑝
) ⋅

[
 
 
 

√
2𝑃𝑡

(4𝜋)
3
𝐿

𝑔𝑣𝑡(𝜃)𝑔𝑣𝑟(𝜃)

𝑅2
𝜆𝑘√𝜎

]
 
 
 

⋅ exp [𝑗𝜋
𝐵𝑊𝑟𝑔

𝑇𝑝
(𝑡 −

2𝑅

𝑐
)

2

] ⋅ exp [2𝜋𝑓𝑑𝑡 − 2𝜋
2𝑅

𝜆𝑘
] + 𝑛̃(𝑡)

(28) 

B. Radar Signal Processing Modeling 

1) Pulse compression 

The pulse width of the transmitted signal influences the range resolution of radar. The narrower the pulse width of the 

signal, the higher the range resolution of the radar. However, when the pulse width of the signal becomes smaller, the maximum 

operating range of the radar will also be reduced, which leads to the fact that the pulse width of the signal cannot be too small. 

Therefore, the commonly adopted method for current radar is to employ a high-power transmitter to emit a wide pulse signal 

and then perform compression on the original wide pulse signal after receiving the echo signal, converting the signal into a 

narrow pulse signal, thereby achieving the functions of enhancing both the maximum operating range and the range resolution. 

This process is known as pulse compression[13]. In the commonly used radars at the present stage, a matched filter is typically 

employed to carry out pulse compression processing of signals. Suppose the transfer function of the matched filter is 𝐻(𝑓), the 

impulse response is ℎ(𝑓), and the input signal is 𝑠(𝑡). The process of the input signal passing through the matched filter is 

depicted in Fig. 1 

 

Fig. 1. Flowchart of Matched Filter 

𝑠0(𝑡) is the output result of the target signal after it has passed through a matched filter, which can be expressed as follows: 

𝑠0(𝑡) = ∫ 𝐻
∞

−∞

(𝑓)𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓 (29) 

Taking the inverse Fourier transform of the transfer function 𝐻(𝑓) results in its impulse response function as 

ℎ(𝑡) = 𝑘𝑠∗(𝑡0 − 𝑡) (30) 

For the sampled digital signal, denoting the input signal after sampling and quantization as 𝑠(𝑛), the unit impulse response of 

the matched filter can be represented as ℎ(𝑛) = 𝑠∗(𝑛). 
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2) demodulation model 

Consider the squaring law and envelope detection methods. The squaring law demodulation process is as follows: 

𝑥(𝑛) = [𝐴𝑟𝑒
2 (𝑛) + 𝐴𝑖𝑚

2 (𝑛)] , 𝑛 = 0, ⋯ , 𝑁 − 1 (31) 

The process of envelope detection is as follows: 

𝑥(𝑛) = √[𝐴𝑟𝑒
2 (𝑛) + 𝐴𝑖𝑚

2 (𝑛)] , 𝑛 = 0, ⋯ , 𝑁 − 1 (32) 

3) Constant False Alarm Handling and Detection Model 

Constant False Alarm Handling and Detection Model Since the signals received by the radar comprise both target echo 

signals and clutter signals, not all processing steps in the signal processor can completely filter out the clutter signals. Thus, a 

threshold value is often set in the radar. The portions of the signal that are higher than the threshold value are retained, while 

those lower than the threshold value are filtered out. This threshold value is the false alarm probability. To achieve this aim, 

the false alarm threshold must be calculated in real time based on the received signal to adjust the radar detection threshold 

accordingly to obtain the desired false alarm probability[14]. The detection processor that can maintain a constant false alarm 

probability is referred to as the Constant False Alarm Rate (CFAR) processor. 

C. Output Model 

1) Distance Output 

The target echo signal will have a time delay 𝑡𝑟 due to the distance between the target and the radar, which can be expressed 

as 𝑡(𝑟) = 2𝑅/𝑐. Among them, 𝑅 represents the relative distance between the target and the radar, and 𝑐 represents the speed 

of light. Thus, in the case of a known time delay, the distance between the target and the radar can be inversely deduced based 

on the time delay 𝑡𝑟 of the echo signal. 

2) Angle output 

It has been mentioned above that since the radar adopts the sum and difference beam angle measurement method when 

measuring the angle, the pitch angle 𝜃 and the yaw angle 𝜙 of the target relative to the radar can be obtained based on the 

amplitude of the corresponding position of the target in the processed sum beam signal and the amplitudes of the corresponding 

positions of the target in the pitch difference beam signal and the yaw difference beam signal: 

𝜃 =
𝛥𝐹(𝛿)

𝛴𝜃
𝑑𝐹(𝜃)

𝑑𝜃
|
𝜃=𝛿

, 𝜙 =
𝛥𝐹(𝛿)

𝛴𝜙
𝑑𝐹(𝜙)

𝑑𝜃
|
𝜙=𝛿

(33)
 

3) Velocity output 

If relative motion exists between the target and the radar, the frequency of the target’s echo will undergo changes. The 

Doppler frequency shift 𝑓𝑑 caused by the relative velocity 𝑣𝑟  can be expressed as 𝑓𝑑 = 2𝑣𝑟/𝜆. In the case where the Doppler 

frequency shift of the echo signal is known, the relative velocity between the target and the radar can be inversely deduced. 

D. Guidance method 

The proportional guidance method refers to the fact that the angular velocity of the missile’s speed-changing direction in 

space is proportional to the angular velocity of the target’s relative radar position angle rotation[15]: 

𝛥𝜃𝑀 = 𝑘′ ⋅ 𝛥𝜃𝑇 (34) 

where 𝛥𝜃𝑀 denotes the angular velocity of the change in the direction of the missile’s velocity in space, 𝑘′ is the proportional 

coefficient, and 𝛥𝜃𝑇 represents the angular velocity of the rotation of the target’s relative position angle to the radar, also known 

as the line-of-sight angular velocity. Since the proportional guidance method alters the direction of the missile’s velocity change 

based on the variation of the target’s angle, it basically avoids situations where the missile makes large turns during the guidance 

process and is convenient for implementation in practical applications. As depicted in Fig. 2, assume that at time 𝑘, the target 

is positioned at point 𝑇, the missile is at point 𝑀, the velocity of the target is 𝑣𝑇, the velocity of the missile is 𝑣𝑀, and the 

distance between the target and the radar is 𝑟. 
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Fig. 2. Example of a figure caption 

A diagram of proportional guidance method. 

Denote the angle between the target’s velocity and the line connecting the target and the missile as 𝜂𝑇, the angle between the 

missile’s velocity and the line connecting the target and the missile as 𝜂𝑀, and 𝑞 as the line-of-sight angle at the time 𝑘. At time 

𝑘 + 1, suppose the angle between the target velocity and the baseline is 𝜂𝑀
′

, the angle between the missile velocity and the 

baseline is 𝜂𝑀
′

, and 𝑞′ is the line-of-sight angle at the time 𝑘 + 1. Then the line-of-sight angular velocity at time 𝑘 + 1 is: 

𝛥𝜃𝑇 = 𝑞′ − 𝑞 (35) 

It is possible to further obtain the angular velocity of the rotation of the missile’s velocity vector at time 𝑘 + 1: 

𝛥𝜃𝑀 = 𝑘 ⋅ (𝑞′ − 𝑞) (36) 

It can be known from the above formula that the angle between the velocity of the missile’s motion and the reference line at 

time 𝑘 + 1 is 

𝜂𝑀
′

= 𝜂𝑀 + 𝛥𝜃𝑀 (37) 

E. Jamming pattern modeling 

1) Amplitude Modulation Interference 

Noise amplitude modulation interference refers to the signal produced by modulating the amplitude of the carrier signal 

with a noise signal[16]. Generally, Gaussian white noise is often used to modulate the signal’s amplitude. The definition of the 

noise amplitude modulation interference signal is as follows: 

𝐽(𝑡) = (𝑈0 + 𝑈𝑛(𝑡)) cos(𝜔𝑗𝑡 + 𝜙) (38) 

where 𝑈𝑛(𝑡) is a generalized stationary random process that follows (0, 𝜎2) distribution, 𝑈0 is the amplitude of the signal basis, 

𝜔𝑗 is the carrier signal frequency, and 𝜙 is the signal phase. 

2) Frequency-modulated noise interference 

Noise frequency modulation interference is currently the most widely used type of suppressive interference signal, which 

has a broader interference bandwidth and makes it easy to achieve a more considerable noise power. The mathematical model 

for noise frequency modulation interference is represented as follows: 

𝐽(𝑡) = 𝑈𝑗cos (𝜔𝑗𝑡 + 2𝜋𝐾𝐹𝑀 ∫ 𝑢
𝑡

0

(𝑡 ′) 𝑑𝑡 ′ + 𝜙) (39) 

where 𝑈𝑗 is the amplitude coefficient of the signal, 𝜔𝑗 is the carrier frequency, 𝐾𝐹𝑀 is the frequency modulation slope, and 

modulation noise 𝑢(𝑡) is a wide-sense stationary random process with zero mean. 𝜙 is the signal phase. 

3) Agile noise jamming 

Agile noise interference is a compromise technique that combines deception and noise interference. Its essence is to combine 

forwarding-style interference with random pulse interference. The agile noise interference expression based on frequency 

modulation noise is as follows: 
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𝐽(𝑡) = 𝑈0cos [2𝜋𝑓𝑗𝑡 + 2𝜋𝐾𝐹𝑀∫ 𝑢 (𝑡 ′) 𝑑𝑡 ′ + 𝜑]

⋅ 𝑒−𝑗𝜋𝐾2
rect (

𝑡

𝑇
) (40)

 

By changing the frequency modulation slope 𝐾𝐹𝑀, the bandwidth of the FM noise can be changed, and therefore, the entire 

bandwidth of the agile noise is also changed. 

III. REINFORCEMENT LEARNING 

Inspired by the laws of biological learning, reinforcement learning interacts with the environment through a trial-and-error 

mechanism and learns and optimizes by maximizing cumulative rewards, ultimately achieving the optimal strategy. In 

reinforcement learning, the decision-maker or learner is defined as the "learning agent," and everything outside the learning 

agent is defined as the "environment," with the system integrating with the environment [17]. The interaction process between 

the learning agent and the environment can be described by three elements: state 𝑠, action 𝑎, and reward 𝑟. The learning agent 

acts 𝑎0 based on the initial state 𝑠0 and interacts with the environment, obtaining reward 𝑟1 and updated state 𝑠1. At time 𝑡, 

based on the current state 𝑠𝑡 and reward𝑟𝑡, the learning agent provides the current action 𝑎𝑡, and then the system state transitions 

from 𝑠𝑡  to 𝑠𝑡+1 . 𝑟𝑡+1  is the feedback reward from interacting with the environment. The basic principle of reinforcement 

learning is shown in Fig. 3. 

 

Fig. 3. Reinforcement learning system 

Generally speaking, reinforcement learning emphasizes the interaction between the agent and the environment, expressed as 

a series of sequences of states, actions, and rewards: 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, ⋯ , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛−1. Although 𝑛 can tend to infinity, a 

terminal state 𝑠𝑛 = 𝑠𝑇 is usually defined in practice for limitation. This sequence of states, actions, and rewards, starting from 

the initial state and ending at the terminal state, is called an Episode or training cycle. The policy is usually denoted as 𝜋, which 

is a mapping from state 𝑠 to action 𝑎. At the current time step, the learning agent interacts with the environment, learns through 

trial and error, and iteratively optimizes the current policy 𝜋 to make the new policy 𝜋1 superior to the current policy 𝜋. This 

process is called "policy update" and is repeatedly executed during reinforcement learning until the learning agent cannot find a 

better policy. In the interaction with the environment, the learning agent receives a feedback reward 𝑟 each time 𝑡 until the 

terminal state 𝑠𝑇. However, the reward at each step does not represent the long-term reward gain. To express the long-term gain 

of the learning agent, the return at time step 𝑡 is introduced as follows: 

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑟𝑇 (41) 

Among them, 𝛾 is the discount factor that satisfies 0 < 𝛾 < 1. When 𝛾 is close to 1, the learning machine tends to place more 

emphasis on long-term returns, while when it is close to 0, it tends to put more emphasis on short-term returns. A value function 

usually represents the merit of a strategy. The state value function used to evaluate the merit of a strategy in state 𝑠 is expressed 

as: 

𝑉𝜋(𝑠) = E[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠, 𝜋] (42) 

According to this formula, the optimal strategy can be obtained: 

𝜋∗ = argmax
𝜋

𝑉𝜋(𝑠) (43) 

Another type of value function is used to evaluate the degree of excellence of taking an action 𝑎 in state 𝑠, called the state value 

function, also known as the Q function: 
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𝑄𝜋(𝑠, 𝑎) = E[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (44) 

The optimal strategy at this point is represented as: 

𝜋∗ = argmax
𝑎

𝑄𝜋∗(𝑠, 𝑎) (45) 

A. Q-learning 

Q-learning, also called Action-dependent Heuristic Dynamic Programming (ADHDP) [18], does not require a model. Q-

learning does not wait until the end of an episode for an update but instead updates using the Temporal Difference (TD) 

approach at each step, achieving a faster convergence effect. The TD learning utilizes the previous estimate to update the current 

state value function. The TD learning method aims to obtain the value function. When confronted with control decision 

problems, the state-action value function is more instructive for selecting actions. Q-learning employs the Bellman optimality 

principle to make the current value function directly approach the value function of the optimal policy. The update method is 

as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝛼𝑄(𝑠𝑡 , 𝑎𝑡) +

(1 − 𝛼)(𝑟𝑡+1 + 𝛾max
𝑎

𝑄 (𝑠𝑡+1, 𝑎
′)) (46)

 

where 𝛼 represents the update rate, which satisfies the condition 0 < 𝛼 < 1, where 𝑎′  is the action that maximizes the Q 

function in state 𝑆𝑡+1. 

B. Policy gradient methods 

Q-learning is a value-function-based approach. In practical applications, a table is frequently employed to store the state or 

state-action value function, thus being relatively inefficient for complex problems with ample action space. Policy gradient 

methods do not rely on the value function. They directly parameterize the policy 𝜋 as 𝜋(𝑠 ∣ 𝜃) and then calculate the gradient 

concerning the policy performance metric. The policy parameters are adjusted based on the gradient direction to obtain the 

optimal policy [19]. Parameterized policies can be classified into stochastic policy 𝜋(𝑠 ∣ 𝜃) = 𝑃[𝑎 ∣ 𝑠, 𝜃] and deterministic 

policy 𝑎 = 𝜇(𝑠 ∣ 𝜃). A policy objective function 𝐽(𝜃) is set to evaluate the parameterized policies. For stochastic policies, the 

action 𝑎 in the current state 𝑠 obeys a particular probability distribution with parameter 𝜃. For deterministic policies, the action 

corresponding to each state is definite. According to the policy gradient theorem, the gradient of stochastic policies is expressed 

as [20]: 

∇𝜃𝐽(𝜃) = E𝑠,𝑎∼𝜋[∇𝜃ln𝜋(𝑠 ∣ 𝜃)𝑄𝜋(𝑠, 𝑎)] (47) 

The deterministic policy gradient is represented as [1], [21]: 

∇𝜃𝐽(𝜃) = E𝑠,𝑎∼𝜇 [∇𝜃𝜇(𝑠 ∣ 𝜃)∇𝑎𝑄𝜇(𝑠, 𝑎)|
𝑎=𝜇(𝑠∣𝜃)

] (48) 

When computing the gradient, a genuine state-action value function 𝑄𝜋(𝑠, 𝑎)  or 𝑄𝜇(𝑠, 𝑎)  is required. Nevertheless, this 

function is still being determined in practice. One method is to employ the return values over certain steps to estimate the state-

action value function. Another approach is to utilize the actor-critic architecture , where the critic approximates the state-action 

value function, and the actor represents the policy. The critic is represented as a function 𝑄(𝑠, 𝑎 ∣ 𝜔) of parameter 𝜔 and is 

updated using the temporal difference method. The temporal difference error 𝛿𝑡 is expressed as: 

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝜔) − 𝑄(𝑠𝑡 , 𝑎𝑡 ∣ 𝜔) (49) 

The update formula for parameter 𝜔 in the evaluator is: 

𝜔 ← 𝜔 + 𝛼𝛿𝑡∇𝑤𝑄(𝑠𝑡 , 𝑎𝑡 ∣ 𝜔) (50) 

Replace the learned evaluation function 𝑄(𝑠𝑡 , 𝑎𝑡 ∣ 𝜔) with the actual value function 𝑄𝜋(𝑠, 𝑎) or 𝑄𝜇(𝑠, 𝑎) in the policy gradient 

formula to update the policy. 



Membrane Technology 

ISSN (online): 1873-4049 

157 Vol: 2024 | Iss: 6 | 2024 | © 2024 Membrane Technology 

IV. CONSTRUCTION OF ADVERSARIAL MODELS 

A. Environmental description 

In the model, the environment is precisely the target radar seeker. The seeker’s state is constituted by two variables: velocity 

and position. The simulation system generates corresponding emission signals based on the configuration of simulation 

parameters. The antenna gain amplifies and transmits the emission signals until they reach the target position. Based on the 

distance between the target and the radar and the scattering cross-sectional area of the target, the emission signals are processed 

correspondingly to generate the echo signal. Subsequently, the echo signal is sent to the radar receiver, while the receiver also 

receives clutter signals from the environment and external interference signals. The receiver transmits all the received signals 

to the signal processor, which processes the received signals and extracts the contained target information. The proportional 

guidance law then adjusts the velocity, and the corresponding position and velocity will also change. This paper considers that 

when the altitude of the seeker is zero, the missile detonates, and this condition serves as the termination condition for one 

simulation. The workflow diagram of the seeker is presented as Fig. 4: 

 

Fig. 4. The workflow diagram of the seeker 

B. Action description 

We selected the three types of interference mentioned above to disrupt the seeker. The action was represented by the 

implementation status of the three interferences at each simulation moment, which a 1x3 vector could indicate. For instance, 

(1, 0, 1) signified that the radio frequency interference was activated, the noise frequency modulation 

interference was deactivated, and the intelligent noise interference was activated. To better conform to the actual situation, it 

was stipulated that the duration from activation to deactivation of each interference type was no less than 5 seconds, which, to 

a certain extent, restricted the occurrence of some interference combinations and enhanced the simulation efficiency. Assuming 

that the duration of one simulation was 5 seconds, the random interference strategy could be presented in Tab. 1. 

TABLE I.  RANDOM JAMMING STRATEGY 

time jamming1 jamming2 jamming3 

1 0 0 0 

2 0 0 0 

3 0 1 0 

4 1 1 0 

5 1 1 0 

6 1 1 1 

C. Reward Function Building 

The reward value function is composed of two components. The first part is the reward function attributed to the 

measurement error, namely the difference between the measurement information output by the radar seeker based on the echo 

signal under the application of interference and the actual information of the target. The more significant the difference, the 

more influential the interference is. The measurement information encompasses the target’s distance, speed, and angle. The 

second part is the detection probability of the interference device by the seeker. To avoid being discovered and detected by the 
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missile, the activation time of each interference device should not be too early. An earlier activation would result in more 

obvious exposure of the target. Therefore, the activation time is also considered within the reward function. The reward function 

can be formulated as: 

𝑟 = 𝑘1𝛥𝐿 + 𝑘2𝛥𝑣 + 𝑘3𝛥𝜃 + 𝑘4𝛥𝜑 + 𝑏1𝑇𝑜𝑛1

+𝑏2𝑇𝑜𝑛2 + 𝑏3𝑇𝑜𝑛3 (51)
 

where 𝛥𝑣 represents the velocity error value, 𝛥𝐿 represents the distance error value, 𝛥𝜃 𝛥𝜑 represents the pitch and azimuth 

angle error values, and 𝑇𝑜𝑛1,𝑇𝑜𝑛2,𝑇𝑜𝑛3 represents the first startup time of the three interference patterns. 𝑘1,𝑘2,𝑘3,𝑘4,𝑏1,𝑏2,𝑏3 

are proportional coefficients. Through numerous experiments, a set of relatively reasonable values for them can be obtained as 

: 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑏1, 𝑏2, 𝑏3 = 0.02,0.1,20,20,0.2,0.1,0.1. 

V. EXPERIMENT 

A. Parameter settings 

The parameters for the phased array radar seeker are listed in Tab. 2. 

TABLE II.  PARAMETERS FOR THE PHASED ARRAY RADAR SEEKER 

Project Major Parameters 

Transmitter Center frequency: 18 GHz 

Bandwidth: 250 MHz 

Maximum power: 30 kW 

Pulse width: 100 ns 

Entry 2 Beam width: 0.2 rad 

Angular measurement range: -𝜋/2 ~ 𝜋/2 

The LFM signal parameters are as shown in Tab. 3. 

TABLE III.  PARAMETERS OF LFM SIGNAL 

Parameters Pulse 

width 

Bandwidth Pulse Repetition 

Period 

Transmission 

frequency 

Number of Pulse 

Emissions 

Value 10us 10MHz 100us 15GHz 16 

TABLE IV.  JAMMING PARAMETERS 

Types of 

jamming 

Amplitude Modulation 

jamming 

Frequency-modulated noise 

jamming 

Agile noise 

jamming 

Pulse width 50us 200us 10us 

Bandwidth 40MHz 1MHz 30MHz 

The parameters of jamming are as shown in Tab. 5: 

TABLE V.  JAMMING PARAMETERS 

Types of 

jamming 

Amplitude Modulation 

jamming 

Frequency-modulated noise 

jamming 

Agile noise 

jamming 

Pulse width 50us 200us 10us 

Bandwidth 40MHz 1MHz 30MHz 

The initial state of the missile and the ship is as shown in Tab. 6: 
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TABLE VI.  JAMMING PARAMETERS 

Parameters Missile Ships 

Magnitude of velocity 2500 km/h 50 km/h 

The direction vector of velocity (0, 1, 0) (√2, √2, 0) 

Location coordinates (0, 0, 10 km) (8 km, 8 km, 0) 

Radar Cross-Section —– 10 m2 

The parameters in reinforcement learning are:𝛼 = 0.02, 𝛾 = 0.8, 𝜀 = 0.5. 

B. Experimental results 

This paper employs four jamming strategies, namely,jamming decision without jamming means,jamming decision with 

random jamming patterns,jamming decision based on Q-learning and jamming decision based on policy gradient. The Fig. 5 

shows the relationship between the distance between the missile and the ship when it explodes and the number of simulation 

experiments conducted in 400 trials. 

 

Fig. 5. Diagram of Variation in Missile Landing Point Distance 

It can be observed from the figure that when no jamming measures are adopted, the missile is capable of causing damage to 

the target. Due to the presence of noise in the received signal, the landing distance of the missile fluctuates, which, to a certain 

extent, validates the accuracy of the radar seeker signal-level simulation. When the random jamming strategy is employed, it can 

exert a particular influence on the guidance of the radar seeker, but the randomness is considerable. When the Q-learning method 

is utilized, as the number of simulations increases, the distance the missile lands gradually converges, and it can stably and 

effectively interfere with the missile. When the policy gradient method is adopted, compared with the Q-learning method, it has 

a faster convergence speed, and the interference effect is similar to that of the Q-learning method. Finally, the optimal jamming 

strategies derived based on Q-learning and policy gradient learning are presented in Tab. 7. 

TABLE VII.  THE BEST JAMMING STRATEGY 

Time Q-learning Policy gradient 

1 000 000 

2 000 000 

3 100 100 

4 100 100 

5 101 100 

6 101 101 
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Time Q-learning Policy gradient 

7 111 111 

8 111 111 

9 111 111 

10 111 111 

11 111 111 

12 111 111 

13 111 111 

14 111 111 

15 111 111 

The optimal interference strategy obtained above was subjected to 100 simulation experiments, and the resulting diagram of 

the missile landing point and the position of the ship is shown in Fig. 6. 

 
Fig. 6. Distribution Map of Missile Landing Points 

The center of the circle represents the target location where the missile detonates, and the data obtained from the simulation 

can be used to establish the following evaluation indicators for missiles[22]. To simplify the analysis, the ship target is regarded 

as a circle with a radius of 100m, and any landing point within a 100m range can inflict effective damage on the target. 

• probability of hitting; The hit probability of the missile is a comprehensive index for evaluating the quality of the 

missile’s landing point. Its meaning is the double integral of the probability density function of the missile’s landing 

point over the idealized circular area of the target ship. The calculation formula is as follows: 

𝑃hit = ∬ 𝑓
𝑥2+𝑦2≤𝑟𝑠

2
(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (52) 

  where 𝑟𝑠 represents the idealized circular radius of the ship, and 𝑓(𝑥, 𝑦) represents the probability density function of 

the landing coordinates of the missile. 

• Accuracy of landing point; The accuracy of missile landing point is an index reflecting the degree to which the landing 

point of an anti-ship missile is close to the center of the target ship. The accuracy of missile landing point can be 

derived by averaging the distances of all the landing points relative to the center of the target ship. The specific 

calculation method is as follows: 

𝑚𝑅 =
∑ 𝑅𝑖

𝑁
tal 

𝑖=1

𝑁total 

(53) 
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  where 𝑅𝑖 is the distance of the missile landing point relative to the center of the ship in the 6th simulation, and 𝑁total  

is the total number of simulations. 

• Circularity deviation probability; he circular error probable (CEP) can be defined as the radius Rcep of the integral 

circle at which the hit probability reaches 0.5. This indicator is a comprehensive reflection of the accuracy and density 

of the landing point of the missile. The integral equation for calculating the circular probability deviation is as follows: 

∬ 𝑓
𝑥2+𝑦2≤𝑅𝑐2

(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0.5 (54) 

• Damage degree; The damage degree is for assessing the destruction degree inflicted on a ship by an anti-ship missile. 

Supposing that when the center of the ship is hit, the damage degree of the anti-ship missile is 1. Then, with the 

distance distribution of the anti-ship missile’s landing point relative to the center of the target ship, the damage degree 

of the anti-ship missile follows a certain probability distribution, and its distribution can be approximated as the 

following distribution: 

𝐷(𝑥, 𝑦) = exp (−
𝑥2 + 𝑦2

2𝑟𝑠
2

) (𝑥2 + 𝑦2 ≤ 𝑟𝑠
2
) (55) 

  The damage degree S of anti-ship missiles is calculated as follows: 

𝑆 = ∬ 𝑓
𝑥2+𝑦2≤𝑟𝑠

2
(𝑥, 𝑦)𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (56) 

By conducting statistical analysis on the data in Fig. 5, the damage effects of the seeker can be obtained as presented in Tab. 8. 

TABLE VIII.  ASSESSMENT RESULTS OF DAMAGE EFFECTS 

Damage indicators No jamming Random jamming Q-learning Policy Gradient 

Probability of hitting 100% 75.3% 5.6% 6.8% 

Accuracy of landing point 38.5 m 72.4 m 5.6 m 6.8 m 

Circularity deviation probability 40.3 m 84.5 m 156.2 m 154.6 m 

Damage degree 70.8% 58.2% 2.6% 3.3% 

It can be seen that the interference strategy based on the reinforcement learning algorithm can have a significant impact on 

the guidance effect of the radar seeker, and the interference effect is stronger than the random interference pattern. Since the 

optimal policy based on the policy gradient method is similar to that of Q-learning, we select the interference policy obtained 

from Q-learning as the optimal interference policy and conduct a simulation experiment. Compared with the situation where no 

interference measures are taken and the situation where random interference measures are adopted, the difference between the 

output signal of the seeker and the actual value at each simulation moment is recorded. The distance error values are presented 

in Fig. 7, the Velocity error values in Fig. 8, the pitch angle error values in Fig. 9, and the yaw angle error values in Fig. 10. 

 

Fig. 7. Diagram of Variation in distance error 
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Fig. 8. Diagram of Variation in Velocity error 

 

Fig. 9. Diagram of Variation in Pitch angle error 

 

Fig. 10. Diagram of Variation in Yaw angle error 

From the above 4 figures, it can also be seen that the best interference strategy obtained by reinforcement learning has a better 

interference effect. 
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VI. CONCLUSION 

This paper initially establishes a signal-level simulation model for the entire end guidance process of the radar seeker from 

several aspects, such as signal transmission, signal reception, signal processing, and measurement information output. 

Subsequently, simulation experiments are conducted without interference, and it is shown that the missile can hit the target 

with sure accuracy, verifying the accuracy of the established model. Then, based on this signal-level simulation model, in the 

interference decision-making of the interference equipment against the radar seeker, Q-learning, and policy gradient learning 

are introduced to obtain the optimal interference strategy. Simulation experiments demonstrate that the interference effect using 

this optimal strategy on the radar seeker is significantly better than that of the random interference strategy, thereby proving 

the superiority of reinforcement learning algorithms in the aspect of radar interference decision-making. 
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