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Abstract： 

Sound Event Detection (SED) technology is currently one of the research hotspots in the field of audio signal processing. Its 

goal is to identify the event categories present in an audio segment and label the start and end times of each event. Using sound 

detection technology to analyze and identify animal sound signals is important for understanding animal behavior patterns and 

detecting animal status. In view of the complex noise environment and low detection accuracy in practical application scenarios, 

this paper takes complex audio as the analysis object and explores the animal sound event detection method combining short-

time Fourier transform technology and deep learning, which is an exploratory work for further developing practical animal 

sound recognition systems. The main work and innovations are as follows: (1) extracting the characteristics of animal sound 

events by analyzing the spectrogram imaging parameters, and (2) proposing a method for detecting animal state sound events 

based on short-time Fourier transform and deep learning. 
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INTRODUCTION 

Sound serves as a pivotal means for animals to convey emotions to the external environment. By extracting features from animal 

sounds, the perception and understanding of animal emotions can be achieved, playing a crucial role in animal health assessments 

and ethological studies. However, traditional methods for detecting animal sound events have gradually revealed their 

limitations, unable to meet the urgent needs of current scientific research and animal health diagnostics.  

Traditional approaches primarily rely on manual field recordings and subsequent audio analysis, demanding extensive acoustic 

knowledge and endurance for prolonged fieldwork from staff. They are susceptible to environmental noise interference, posing 

significant challenges, inefficiencies, and a high degree of subjectivity in data collection and analysis processes, thereby 

compromising the objectivity and accuracy of detection results. The difficulties in animal sound event detection lie in the 

acquisition of sound signals, the filtering of background noise, and the automatic identification of valid sound events.  

Early research on animal sound event detection relied on manually deployed portable recording devices in wild environments or 

monitoring systems at ground-based fixed stations, followed by subsequent audio analysis. Buchan S. J., et al. [2] (2020) utilized 

Hidden Markov Model technology to achieve automatic detection and classification of blue whale vocalizations from PAM data, 

a method of great significance for advancing the monitoring of endangered whale populations, yet limited to specific datasets 

and species, necessitating additional optimization and adjustment for animal sound event detection. Premoli M., et al. [4] (2021) 

proposed and evaluated a series of supervised learning methods for automatic classification of ultrasonic vocalizations (USVs) 

to deeply analyze animal communication, significantly improving classification performance using Convolutional Neural 

Networks and other supervised learning algorithms to process spectrogram images. Romero-Mujalli D., et al. [5] (2021) validated 

the application potential of DeepSqueak software in the detection, clustering, and classification of high-frequency/ultrasonic 
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vocalizations in primates, capable of handling different call types, individual differences, and recording quality with high correct 

detection rates, successfully applied to species with close evolutionary relationships.  

Abbasi R. L., et al. [6] (2022) introduced BootSnap, a classification method based on ensemble deep learning, successfully 

categorizing house mouse vocalizations into 12 classes with high generalization ability, albeit constrained to specific research 

contexts and animal species. Pessoa D., et al. [7] (2022) developed a system for classifying mouse USVs, employing a new 

segmentation algorithm based on spectral entropy analysis and a new classification method based on contour features, enabling 

efficient and accurate identification and classification of a broader range of USV categories. Bru E., et al. [8] (2023) combined 

acoustic localization with high-resolution land cover classification, offering potential for large-scale monitoring of vocally active 

animals, which can be used to infer animal habitat and landscape utilization. Stoumpou V., et al. [9] (2023) developed AMVOC, 

a free and open-source software incorporating unsupervised deep learning methods for detecting and analyzing mouse USVs. 

In recent years, with the rapid development of the Internet of Things technology, deep learning algorithms, and audio signal 

processing techniques, the application of deep learning algorithms for animal sound event detection has emerged as a research 

hotspot.  

Gómez-Armenta J. R., et al. [10] (2024) proposed a method using deep neural networks to analyze bark sounds for classifying 

dog identity, breed, age, gender, and barking context; Kucukkulahli E., et al. [11] (2024) classified cat sounds using deep learning 

models based on the Vision Transformer (ViT) and Convolutional Neural Network (CNN) architectures, finding that the ViT 

model based on BEiT outperformed the current best models; Manriquez P. R., et al. [12] (2024) investigated the application of 

Convolutional Neural Network architectures in bioacoustic classification tasks of emotional mammal vocalizations with small 

datasets, discussing the ability of networks to generalize emotional features of vocalizations across taxonomic groups; Pagliani 

B., et al. [13] (2024) classified the click sounds of common short-beaked dolphins based on clustering and discriminant analysis, 

finding that temporal parameters had the highest accuracy in comparisons, with time-frequency datasets being the best 

classification method; Pann V., et al. [14] (2024) proposed the use of Deep Convolutional Neural Networks (DCNN) and a novel 

feature extraction method, Mixed-MMCT, to automatically and accurately distinguish pig vocalizations from non-vocalizations, 

experimentally demonstrating the superiority of this method in real pig farming environments; Prakash R. V., et al. [15] (2024) 

introduced an automatic detection and emotional state classification method for wildlife based on a stacked Long Short-Term 

Memory (LSTM) network and hybrid features, achieving high classification accuracy; Salem, S. I., et al. [16] (2024) proposed 

a segmentation method based on acoustic anomaly detection and an integrated framework of machine learning models for 

extracting and classifying deer calls from long recordings, showing that all models performed well during validation and testing 

stages, with the ensemble method significantly improving classification accuracy; Shorten P. R., et al. [17] (2024) developed an 

algorithm using acoustic sensors worn on cow collars to distinguish cow vocalizations from other noises, validating the feasibility 

of identifying cow vocalization features, finding significant differences in vocalization features among cows, and enabling the 

identification of cows with abnormal vocalization patterns. 

Automatic detection of bioacoustic events is crucial for monitoring wildlife. Given the cumbersome annotation process, limited 

annotated events, and large volumes of recordings, few-shot learning based on a small number of instances is of vital importance 

(2021) [18]. Researchers such as Liwen You [19] (2023) and Jinhua Liang [20] (2024) have attempted to train multifunctional 

animal sound detectors using small sets of audio samples. Few-shot bioacoustic sound event detection is also an important task 

in the field of animal vocalizations in nature [21] (2022). 

During the audio recognition process for animal sound event detection, it is inevitable to encounter noise interference from the 

environment, necessitating algorithms with strong environmental adaptability and anti-interference capabilities [26] (2023) to 

effectively extract animal sound features in complex and variable natural environments. 

This paper proposes an animal sound event detection method based on artificial intelligence and deep learning technology. 

Building on previous animal sound event detection methods, it innovatively determines three imaging parameters of the 

spectrogram—audio frequency, audio duration, and audio signal intensity range—through statistical analysis to achieve feature 
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extraction of animal sound events. It then applies Short-Time Fourier Transform (STFT) to the data and finally inputs the 

generated spectrogram into a pre-trained Vision Transformers (ViT) model to achieve animal sound event detection. 

 

STFT-VIT-BASED ANIMAL CHIRPING SOUND ANALYSIS AND HEALTH STATUS IDENTIFICATION 

METHOD 

Animal chirping sound analysis and health status recognition method based on animal chirping sound spectrogram analysis of 

large model STFT-ViT process using statistical analysis, audio signal strength, audio duration data visualization and analysis, to 

determine the audio frequency, audio duration and audio signal strength range of the three imaging parameters of the sound 

spectrogram and short time distance Fourier transform of the data; to generate the sound spectrogram image input into the pre-

trained Vision Transformer model to realize the detection of animal sound events. 

The STFT-ViT based animal chirping sound analysis and health state recognition method contains 2 parts, one is the training 

part and the other is the online health state recognition application part. The detailed steps of training among them include: 

① reading an audio file and obtaining data of audio frequency, audio signal strength, and audio duration in the audio file; 

② Data visualization to analyze the data and determine the two imaging parameters of audio signal strength range and audio 

duration; 

③ Process the audio data with short time-distance Fourier transform, and draw an acoustic spectrogram based on the three 

imaging parameters of audio frequency, audio signal intensity range and audio duration; 

④ Construct the classification dataset of acoustic spectrogram, and train the Vision Transformer model for animal chirping 

sound analysis and health status recognition. 

The detailed steps of the online animal chirping sound analysis and health state recognition application part include: 

① Collecting animal chirping sounds online and obtaining data on frequency and signal strength in the sounds; 

② Using a window with a timing length of 3s, the sound data is processed by a short time-distance Fourier transform to determine 

the final imaging parameters and draw a sound spectrogram based on the parameter constraints. 

③ Input the image into the pre-trained Vision Transformer model for animal chirping sound analysis and health status 

recognition. 

1. 1 Introduction and Analysis of Animal Chirping Sound Data Dataset 

The data used in this paper comes from audio files generated by 10 adult Maine cats kept under the same conditions (same 

owner) and 11 adult European Shorthair cats kept under different conditions (different owners), totaling 21 cats in three different 

situations: being petted, before feeding, and being alone in an unfamiliar environment, respectively. The dataset contained 93 

samples in the waiting-for-food situation, 135 samples when being petted, and 220 samples when alone in an unfamiliar 

environment. 

Before constructing the dataset, the influence of the cat's breed and sex (neutered male/female) on the purring was considered, 

the cat's acclimatization period (in the presence of at least one veterinarian to avoid overstimulation of the cat), and the placement 

of the recording device (distance and angle) were taken into account to ensure the quality of the audio. 

By inputting the audio file and obtaining the audio signal strength and audio duration data therein, a histogram of the audio signal 

strength distribution and audio duration distribution was plotted as shown in Figure 1. Data visualization and analysis are 

performed for Figure 3 to obtain the statistical features of audio signal strength and audio duration, and two key features of the 

animal sound audio data are shown through two audio data distribution graphs: audio signal strength and audio duration.  

Among them, the figure on the left is the distribution graph of audio signal intensity, which takes audio signal intensity as the 

horizontal axis and frequency as the vertical axis, and statistically demonstrates the distribution of the maximum audio signal 

intensity (Max intensity) and the minimum audio signal intensity (Min intensity) of all audio files, respectively. As can be seen 

from the figure, the range of audio intensity varies from -125dB to 100dB, while most of the audio signal intensity is concentrated 

between [-50,75]dB, which indicates that the audio signal intensity within the range occurs more often; the right-hand side of 

the figure is the distribution of audio duration, which is statistically displayed with audio duration as the horizontal axis and 
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frequency as the vertical axis. From the figure, it can be seen that the range of audio duration varies from 0s to 4s, and most of 

the audio duration is within the range of 3s, which indicates that most of the animal sound durations are in the first 3s of the 

audio duration.It has been shown by Ntalampiras S [4] and other studies that the use of devices with a frequency reception range 

of [0,4000] Hz can be better realized to obtain the cat's purring audio data, and then to judge its sound events [1]. Based on the 

above analysis, it can be finally determined that the audio signal strength range is between [-50, 75] dB; the audio duration is 

limited to 3s, and the audio frequency range is between [0, 4000] Hz. 

 

Fig. 1 Audio signal strength distribution and audio duration distribution of cat purring data 

 

1.2 STFT Acoustic Spectrogram Classification Dataset Construction 

(1) Data preprocessing 

For the sampling frequency and audio data obtained by reading audio files, firstly, the audio data channels are uniformly 

processed as unidirectional channels. If the data is multi-channel, only the data of the first channel is taken, which simplifies the 

audio processing process and improves the processing efficiency without losing the key information. Then, based on the 

conclusions drawn from the statistical analysis, the audio duration is uniformly processed as 3s length. If the audio duration is 

less than 3s, then the audio is looped and extended to reach the target length; if the audio duration is longer than 3s, then it is 

truncated to 3s. Finally, the short time-distance Fourier transform is performed on the completed data preprocessing to obtain 

the audio data, and the output spectrograms are plotted based on the three parameters of the audio signal intensity range, the 

audio duration and the audio frequency. 

(2) Short time-distance Fourier transform 

The short time-distance Fourier transform is applied to the preprocessed data for data feature extraction, and the expression is as 

follows: 

 

Table 1 Symbol Representation 

symbol definition 

  Symbol Definition 

( )tw
 

Angular frequency 

* Conjugate 

 

STFTX(t, ω) = ∫ x(τ)w∗(τ − t)e−jwτdτ
∞

−∞
  （1） 
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The short-time distance Fourier transform STFT_X (t,ω) of the signal is discretized by setting the discrete signal of the continuous 

time-domain signal x(t) to be x(n), and the window function to be x(m), which is shifted on the time axis, and the length of the 

window function to be N. Then, the discrete form of short-time distance Fourier transform is: 

STFTX(n, k) = ∑ x(n + m)w(m)e−j2πnk/NN−1
m=0   （2） 

in Eq. (2) 
)()(x mwmn +

 is the short time series. 

By calculating the result of the short time-distance Fourier transform for each time point n, the frequency-strength-time 

characteristic distribution of the signal can be obtained. Among them, the frequency characteristic distribution of the signal 

describes the distribution of the signal at different frequencies; the intensity characteristic of the signal describes the strength of 

the signal, and the time characteristic of the signal describes the law and characteristics of the signal change with time. 

(3) STFT acoustic spectrogram plotting 

After the short time distance Fourier transform, based on the audio signal intensity range, audio duration and audio frequency 

three parameters drawn out in Figure 4 ~ Figure 6 in the time-frequency diagram and the acoustic spectrogram, from the acoustic 

spectrogram can be derived from the horizontal axis of the time longitudinal axis of the frequency distribution of the frequency 

distribution of the frequency of the signal at the time of the existence of each position represented in the time.  

The horizontal axis represents the audio duration of 3s, reflecting the change of the audio signal over time; the vertical axis 

represents the audio frequency range of [0,4000] Hz, which can be derived from the audio signal contains which frequency 

components, the frequency value of the fundamental tone, the frequency distribution of the overtones, and the change of 

frequency over time. The colors represent the audio signal strength range of [-50,75]dB, with higher color brightness representing 

stronger signal strength and darker representing weaker signal strength. 

Figure 2 shows the sound spectrum of the audio generated when the cat is stroked. From the right side of the sound spectrum, it 

can be seen that the vocal signal has a certain continuity and regularity, the frequency range is more concentrated, the vocal 

duration is longer and continuous, and the vocal performance is stable. This indicates that when the cat is being petted, it will 

emit a calm purr because it is in a safe and stable environment, and express its specific emotions through a relatively uniform 

frequency. 

Figure 3 shows the spectrogram of the audio produced by the cat in an unfamiliar environment. From the spectrogram on the 

right, it can be seen that the intensity of the vocal signal shows large fluctuations, and the duration of the vocalization is shorter 

and intermittent, with a wider frequency range. This indicates that cats in unfamiliar environments will emit tentative and 

intermittent sounds due to restlessness and panic, and express their fearfulness through purring at different frequencies. 

Figure 4 shows the corresponding sound spectrogram of the audio generated when the cat waits for food. From the right side of 

the sound spectrogram, it can be seen that the intensity of the vocal signal is relatively low and stable, the duration of the 

vocalization is longer but intermittent, and the frequency range is mainly concentrated in the low-frequency band. This indicates 

that the sound emitted by the cat when waiting for food is weak and low and long due to hunger. 

 

By comparing the acoustic spectrograms corresponding to the three different vocal events of being stroked, being in an unfamiliar 

environment and waiting for food, it can be found that there are significant differences in their corresponding audio signal 

strength, vocal duration and vocal frequency in the acoustic spectrograms, which can highlight the characteristics of the audio 

data of different animal vocal events. 

By inputting the spectrograms into the pre-trained Vision Transformer model, the final output can be the situation of the cat 

under the corresponding sound event. 



Membrane Technology 

ISSN (online): 1873-4049 

 

137 Vol: 2024 | Iss: 6 | 2024 | © 2024 Membrane Technology 

 

Fig. 2 Time-domain and spectrogram of a cat being petted. 

 

 

Figure 3 Time-domain map and spectrogram of a cat in an unfamiliar environment. 

 

 

Fig. 4 Time-domain and acoustic spectrograms of cats waiting for food 

 

(4) Construction of STFT spectrogram classification dataset 

After the data preprocessing, short time distance Fourier transform, and acoustic spectrogram plotting are performed sequentially 

on all the animal sound audio files, the acoustic spectrograms with hidden axis labels are saved, and based on the three sound 

event types of brushing, isolation_in_an_unfamiliar_environment, and waiting_for_food, the corresponding animal sound events 

are categorized to construct the STFT acoustic spectrogram classification dataset. The acoustic spectrograms of the 

corresponding animal sound events were categorized to construct the STFT acoustic spectrogram classification dataset. 

Among them, brushing represents the acoustic spectrogram folder corresponding to the audio data generated when the cat is 

being petted, and there are 127 samples under this folder; isolation_in_an_unfamiliar_environment represents the acoustic 

spectrogram folder corresponding to the audio data generated when the cat is in an unfamiliar environment; and there are 221 

samples under this folder. The folder “waiting_for_food” represents the folder of sound spectrograms corresponding to the audio 

data generated by a cat waiting for food; there are 92 samples under this folder. 
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VISION TRANSFORMER MODEL FOR ANIMAL CHIRPING SOUND ANALYSIS AND HEALTH STATUS 

RECOGNITION 

ViT divides the input picture into multiple sub-patches (16×16), and then projects each sub-patch into a fixed-length vector to 

be fed into the Transformer model, and the subsequent encoder operation is exactly the same as in the original Transformer 

model. However, because of the picture classification, a special classification token is added to the input sequence, and the output 

corresponding to this token is the final category prediction. 

According to the flowchart in Fig. 5, a ViT block can be divided into the following steps: 

(1) patch embedding: for example, if the input image size is 224 × 224, and the image is divided into fixed-size subgraphs with 

a subgraph size of 16 × 16, then 224 × 224/16 × 16 = 196 subgraphs will be generated for each image, i.e., the length of the input 

sequence is 196, and the dimensionality of each subgraph is 16 × 16 × 3 = 768, and the dimensionality of the linear projection 

layer is 768 × N (N = 768), so the dimension of the input after passing through the linear projection layer is still 196 × 768, i.e., 

there are a total of 196 tokens, each with a dimension of 768. a special character cls needs to be added here as well, so the final 

dimension is 197 × 768. so far a visual problem has been transformed by patch embedding into a seq2seq problem; 

(2) positional encoding (standard learnable one-dimensional positional embedding): ViT also needs to incorporate positional 

encoding, which can be interpreted as a table with a total of N rows, the size of N is the same as the length of the input sequence, 

and each row represents a vector, the dimension of the vector is the same as the dimension of the input sequence embedding 

(768). Note that the operation of position encoding is summing, not splicing. The dimension remains 197 × 768 after adding the 

position encoding information; 

(3) LN/multi-head attention/LN: The LN output dimension is still 197 × 768. for multi-head self-attention, the inputs are first 

mapped to q, k, and v. If there is only one head, the dimensions of qkv are all 197 × 768, and if there are twelve heads (768/12 

= 64), the dimensions of qkv are 197 × 64, and there are a total of 12 groups of qkvs, and then finally the output of 12 groups of 

qkvs are spliced together, and the output dimension is 197×768, and then after another layer of LN, the dimension is still 

197×768; 

(4) MLP: the dimension is enlarged and then shrunk back, 197×768 is enlarged to 197×3072, and then shrunk again to 197×768 

After block, the dimension is still the same as the input, which is 197×768, so multiple blocks can be stacked. Finally, the output 

z_L^0 corresponding to the special character cls will be used as the final output of the encoder to represent the final picture 

display (another approach is to leave the cls character out, and do an average of all the labeled outputs), as shown in the following 

figure in Eq. (6), followed by an MLP for picture classification; 

z0 = [xclass; xp
1E; xp

2E; ⋯ ; xp
NE] + EposE ∈ ℝ(P2⋅C)×D,   Epos ∈ ℝ(N+1)×D (3) 

z′ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 … L (4) 

zℓ = MLP(LN(z′
ℓ)) + z′

ℓ,   ℓ = 1 … L (5) 

y = LN(zL
0) (6) 

where input image image x ∈ ℝH×W×C,2D patches xp ∈ ℝN×(P2⋅C) ,C is the number of channels, P is the size of the subgraphs, 

and there are a total of N patches, N=HW/P^2. 
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Fig. 5 Structure of Vision Transformer model 

 

EXPERIMENTAL RESULTS AND ANALYSIS 

Our model is a pre-trained fine-tuned version of google/vit-base-patch16-224-in21k on the imagenet 21k dataset. 

For model training, we choose to use the Adam optimizer and set its parameters betas to (0.9,0.999), epsilon to 1×10-8, set the 

learning rate to 2×10-5, and the type of learning rate scheduler to linear, which is convenient for the model to achieve fast 

convergence in the early stage of training while keeping the learning rate small in the late stage of training to stabilize the model 

performance; for the training process For the training process, we set the number of training rounds to 50.0, the size of the 

training batch to 8, and the size of the evaluation batch to 8 to maintain consistency with the size of the training batch, and set 

the random seed to 1337 to control the initial state of the random number generator to ensure the reproducibility of the 

experiment. 

Next, the training data from the training set is input into the model for forward propagation calculation, the difference between 

the model prediction result and the actual label is calculated using the cross-cross entropy loss function to obtain the loss value, 

and the weights of the model are updated using the optimizer based on the gradient of the loss function. Then, the model is 

trained iteratively for a predetermined number of training cycles. 

Finally, our network structure can be trained using the above parameters to obtain the large model STFT-ViT for animal chirping 

spectrogram analysis, whose final model validation loss is 0.0295 and model accuracy is 100%. 

As Figure 6~Figure 7 shows the relevant curves of model training. Among them, Fig. 6 shows the model training loss curve and 

the validation loss curve, and it can be seen from the images that both the training loss curve and the validation loss curve show 

a decreasing trend with the increase of the number of iterations. This indicates that the model is gradually learning the features 

of the data during the training process and gradually reducing the prediction error. Since both curves show a decreasing trend, 

and there is no obvious fluctuation or rise, it can be initially judged that the model is stable during the training process, and there 

is no serious overfitting or underfitting phenomenon. Among them, the training loss and the validation loss are gradually close 

to each other over time, although there still exists a certain difference between the two, and the difference significantly decreases 

with the increase in the number of iterations, indicating that the model not only performs well on the training data, but also 

maintains a better performance on the unseen validation data, and has a better generalization ability. 

Figure 7 shows the model accuracy curve, from the image can be seen that the model accuracy curve with the increase in the 

number of iterations shows an upward trend and tends to stabilize, indicating that the model gradually learns the characteristics 

of the data during the training process, and tends to stabilize in the later stage, which means that the model has converged to a 

relatively good state. 
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Fig. 6 Training Loss curve and Validation Loss curve of model training with adaptive acoustic spectrogram parameters. 

 

Fig. 7 Accuracy curve of model training for acoustic spectrogram parameter adaptation. 

 

(1) Comparison experiment: 

As Figure 8~Figure 10 shows the model training correlation curves when the audio duration, audio signal strength and audio 

frequency are all adaptive. 

Among them, Fig. 8~Fig. 10 shows the comparison between the training loss curve and validation loss curve of our model and 

the model with parameter adaption. As can be seen from the images, the training loss shows a trend of rapid decline followed by 

leveling off with the increase in the number of iterations, but the validation loss starts to show a rising trend after it rapidly 

decreases to reach a lower point. This indicates that although the model learns faster at the beginning of training, and is able to 

quickly learn the features of the data and reduce the loss, as the training proceeds, the model fits the training data better and 

better, and the overfitting phenomenon may have occurred, resulting in a decrease in the generalization ability on the validation 
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set, and the final model validation loss is obtained to be 0.0295; Fig. 10 shows a comparison of the accuracy curves of the model, 

and it can be seen from the image that the model Accuracy curve with the increase in the number of iterations shows an upward 

trend, and the final model accuracy rate obtained is 100%. Combining the model loss curves with the accuracy curves, it can be 

seen that the model based on the three acoustic spectrogram imaging factors of audio duration, audio signal strength, and audio 

frequency are all adaptive has overfitting phenomenon during the training process, and performs too well on the training dataset, 

so much so that it learns noises or specific patterns in the training data, which do not apply to the new, unseen data. 

 

Table 2 Training data for our model and the parameter adaptive model 

STFT parameter setting method  Accuracy Training set loss Test set loss 

Our Approach 100% 0.307 0.0295 

Audio duration, audio signal strength, 

audio frequency adaption 
100% 0.307 0.0295 

 

Fig. 8 Comparison of the Training Loss curves of our method with audio duration, audio signal strength, and audio frequency 

adaption. 
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Fig. 9 Validation Loss curve of our method versus audio duration, audio signal strength, and audio frequency adaption. 

 

Fig. 10 Accuracy curve of our method versus audio duration, audio signal strength, and audio frequency adaption. 

 

 

(2) Ablation experiment 

As shown in Figures 11 to 13, the accuracy curves obtained by model training after making changes to the three acoustic 

spectrogram imaging parameters, namely, audio duration, audio signal strength, and audio frequency, respectively. Among them, 

Fig. 11 is the model training accuracy curve when the audio duration is adaptive, and the final model validation loss is 0.0301, 

with a model accuracy of 99.5%; Fig. 12 is the model training accuracy curve when the audio duration reaches 3s through the 

complementary 0 to fill in the topology, and the final model validation loss is 0.1606, with a model accuracy of 95.23%; Fig. 13 

is the model training accuracy curve when the audio signal strength is adaptive; Fig. 13 is the model training accuracy curve 

when the audio signal strength is adaptive; Fig. 14 is the model training curve when the audio signal strength is adaptive. Figure 
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13 shows the model training accuracy curve when the audio signal strength is adaptive, and the final model validation loss 

obtained is 0.0444 and the model accuracy is 99.32%; Figure 19 shows the model training accuracy curve when the audio 

frequency is adaptive, and the final model validation loss obtained is 0.0527 and the model accuracy is 99.09%. 

As can be seen in the four images from Figure 11 to Figure 13, the model gradually learns the characteristics of the data as the 

training progresses, gradually adapts to the training data, and begins to make more accurate predictions.  

Combining the model training loss curve and the validation loss curve when the audio duration is adaptive, it can be seen that 

although the final accuracy of the model training in Fig. 11 reaches 99.5%, the failure to limit the range of audio durations leads 

to the model learning the noise or specific patterns in the training data, and overfitting phenomenon, which suggests that the 

model, although it is able to perform well on the training data, is unable to maintain better performance on the unseen validation 

data; Fig. 11~13 shows that the model gradually learns the features of the training data and starts to make better predictions. This 

shows that although the model can perform well on the training data, it cannot maintain good performance on the unseen 

validation data; Figure 12 combines the model training loss curves with the validation loss curves when the audio duration is 

top-filled to a length of 3s by complementary zeros in Figure 13, which shows that the simple complementary zeros top-filling 

method has a certain negative impact on the training of the model, and the model is difficult to learn more features of the data, 

which leads to an increase in the training loss and a decrease in the accuracy; Figure 14 combines the model training loss curves 

and the validation loss curves when the audio signal strength is adaptive model training loss curves and validation loss curves 

can be seen that the model performance on the training set is improved in the later stages, but the performance on the validation 

set is not significantly improved, indicating that the model training in the later stages of the overfitting phenomenon, due to the 

failure to limit the range of the audio signal strength leads to learning too much noise or details on the training set, rather than 

learning features with strong generalization ability; audio frequency adaptive The model training loss curve and validation loss 

curve at time can be seen, due to the failure to restrict the audio frequency, resulting in the model learning as the model training 

advances, the model learning is subject to the noise or specific patterns in the training data, and it is difficult to learn more 

features of the data that are conducive to classification. 

In summary, restricting the audio duration to 3s intercepts the audio time range where the data features are located as much as 

possible, restricting the audio signal strength to [-50,75]dB retains the audio signal strength of the main sound as much as 

possible, and restricting the audio frequency to 4000Hz filters out noise as much as possible, which effectively improves the 

model's ability to learn the data features through the restriction of the three acoustic spectrogram imaging parameters, and avoids 

the occurrence of overfitting phenomenon as much as possible. avoid overfitting phenomenon. 

 

Table 3 Comparison of our method with models of audio timbre, intensity, and frequency adaptive 

STFT parameter setting method  Accuracy Training set loss Test set loss 

Our Methods  97.95% 0.0941 0.0730 

Audio Duration Adaptation  99.5% 0.0288 0.0301 

Audio duration with 0 topology delay  95.23% 0.4276 0.1606 

Audio Signal Strength Adaptive  99.32% 0.3043 0.0444 

Audio Frequency Adaptive  99.09% 0.3265 0.0527 
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Fig. 11 Comparison of Training Loss curve of our method with other methods of model training 

 

Fig. 12 Validation Loss curve of our method vs. other methods for model training. 
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Fig. 13 Accuracy curve of our method vs. other methods for model training. 

 

CONCLUSION 

This paper combines statistical analysis and artificial intelligence deep learning technology to propose an animal sound event 

detection method that can achieve optimized signal analysis and improve measurement accuracy, effectively improving the 

accuracy of animal sound event detection. The innovation points are: 

① The method of statistical analysis is used to limit the information of the three imaging parameters of the acoustic spectrogram, 

so as to realize the limitation of the resolution bandwidth of the acoustic spectrogram, enhance the differentiation ability of the 

signals of similar frequency, and improve the measurement accuracy of the signals. 

② Use the pre-trained Vision Transformer model to provide a good initialization for sound event detection, and with the help 

of the pre-trained weights, realize that it can still effectively learn audio features and accurately detect sound events in the face 

of less labeled data. 

③ The experimental results show that the animal sound event detection method based on artificial intelligence deep learning 

technology is accurate and effective, which can improve the model accuracy rate of 98.64% and effectively improve the accuracy 

of animal sound event detection. 

However, the generalization ability of the model across species, the scarcity and diversity of data in animal sound event detection 

are all great challenges to animal sound event detection, and the next step is to combine audio processing technology with deep 

learning acoustic detection technology to achieve the enhancement of animal sound data. 

 

DECLARATION OF CONFLICTING INTERESTS 

The author(s) declared no potential conflicts of interest with respect to the research, author-ship, and/or publication of this article. 

DATA SHARING AGREEMENT  

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. 

FUNDING 

The project was supported by National Key R&D Plan National Quality Infrastructure System Special Project 

(2022YFF0607805), Guangdong Provincial Market Supervision Administration Science and Technology Project - Key 

Laboratory Special Fund (2024CJ09), Guangzhou Institute of Technology and Research Startup Funded Project (2023KYQ177). 

 

 



Membrane Technology 

ISSN (online): 1873-4049 

 

146 Vol: 2024 | Iss: 6 | 2024 | © 2024 Membrane Technology 

REFERENCE 

[1] Ntalampiras S, Ludovico L A, Presti G, et al. Automatic Classification of Cat Vocalizations Emitted in Different Contexts[J]. 

Animals, 2019, 9(8). 

[2]  Buchan S J, Mahú R, Wuth J, et al. An unsupervised Hidden Markov Model-based system for the detection and classification 

of blue whale vocalizations off Chile[J]. Bioacoustics-the International Journal of Animal Sound and Its Recording, 2020, 

29(2): 140-167. 

[3] Prato-Previde E, Cannas S, Palestrini C, et al. What's in a Meow? A Study on Human Classification and Interpretation of 

Domestic Cat Vocalizations[J]. Animals, 2020, 10(12). 

[4] Premoli M, Baggi D, Bianchetti M, et al. Automatic classification of mice vocalizations using Machine Learning techniques 

and Convolutional Neural Networks[J]. Plos One, 2021, 16(1). 

[5] Romero-Mujalli D, Bergmann T, Zimmermann A, et al. Utilizing DeepSqueak for automatic detection and classification of 

mammalian vocalizations: a case study on primate vocalizations[J]. Scientific Reports, 2021, 11(1). 

[6] Abbasi R L, Balazs P, Marconi M a L, et al. Capturing the songs of mice with an improved detection and classification 

method for ultrasonic vocalizations (BootSnap)[J]. Plos Computational Biology, 2022, 18(5). 

[7] Pessoa D, Petrella L, Martins P, et al. Automatic segmentation and classification of mice ultrasonic vocalizations[J]. Journal 

of the Acoustical Society of America, 2022, 152(1): 266-280. 

[8] Bru E, Smith B R, Butkiewicz H, et al. Combining acoustic localisation and high-resolution land cover classification to study 

predator vocalisation behaviour[J]. Wildlife Research, 2023, 50(12): 965-979. 

[9] Stoumpou V, Vargas C D M, Schade P F, et al. Analysis of Mouse Vocal Communication (AMVOC): a deep, unsupervised 

method for rapid detection, analysis and classification of ultrasonic vocalisations[J]. Bioacoustics-the International Journal 

of Animal Sound and Its Recording, 2023, 32(2): 199-229. 

[10] Gómez-Armenta J R, Pérez-Espinosa H, Fernández-Zepeda J A, et al. Automatic classification of dog barking using deep 

learning[J]. Behavioural Processes, 2024, 218. 

[11] Kucukkulahli E, Kabakus A T. Towards Understanding Cat Vocalizations: A Novel Cat Sound Classification Model Based 

on Vision Transformers[J]. Applied Acoustics, 2024, 226. 

[12] Manriquez P R, Kotz S A, Ravignani A, et al. Bioacoustic classification of a small dataset of mammalian vocalisations using 

deep learning[J]. Bioacoustics-the International Journal of Animal Sound and Its Recording, 2024, 33(4): 354-371. 

[13] Pagliani B, Amorim T O S, De Castro F R, et al. Sounds in common: Time-frequency as the classification parameters for 

pulsed sounds produced by<i> Delphinus</i><i> delphis</i>[J]. Behavioural Processes, 2024, 221. 

[14] Pann V, Kwon K S, Kim B, et al. DCNN for Pig Vocalization and Non-Vocalization Classification: Evaluate Model 

Robustness with New Data[J]. Animals, 2024, 14(14). 

[15] Prakash R V, Karthikeyan V, Vishali S, et al. Multi-level LSTM framework with hybrid sonic features for human-animal 

conflict evasion[J]. Visual Computer, 2024. 

[16] Salem S I, Shirayama S, Shimazaki S, et al. Ensemble deep learning and anomaly detection framework for automatic audio 

classification: Insights into deer vocalizations[J]. Ecological Informatics, 2024, 84. 

[17] Shorten P R, Hunter L B. Acoustic sensors to detect the rate of cow vocalization in a complex farm environment[J]. Applied 

Animal Behaviour Science, 2024, 278. 

[18] Veronica Morfi, Inês Nolasco, Vincent Lostanlen, Shubhr Singh, Ariana Strandburg-Peshkin, Lisa F. Gill, et al., "Few-shot 

bioacoustic event detection: A new task at the dcase 2021 challenge", Proceedings of the Detection and Classification of 

Acoustic Scenes and Events 2021 Workshop (DCASE2021) 2021 Detection and Classification of Acoustic Scenes and 

Events 2021 Workshop DCASE2021, Conference date: 15-11-2021. 

[19] L. You, E. P. Coyotl, S. Gunturu and M. Van Segbroeck, "Transformer-Based Bioacoustic Sound Event Detection on Few-

Shot Learning Tasks," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10097081.  



Membrane Technology 

ISSN (online): 1873-4049 

 

147 Vol: 2024 | Iss: 6 | 2024 | © 2024 Membrane Technology 

[20] J. Liang, I. Nolasco, B. Ghani, H. Phan, E. Benetos and D. Stowell, "Mind the Domain Gap: A Systematic Analysis on 

Bioacoustic Sound Event Detection," 2024 32nd European Signal Processing Conference (EUSIPCO), Lyon, France, 2024, 

pp. 1257-1261, doi: 10.23919/EUSIPCO63174.2024.10714948.  

[21] D. Tuia, B. Kellenberger, S. Beery, B. R. Costelloe, S. Zuffi, B. Risse, A. Mathis, M. W. Mathis, F. Van Langevelde, T. 

Burghardt et al., "Perspectives in machine learning for wildlife conservation", Nature communications, vol. 13, no. 1, pp. 

1-15, 2022. 

[22] D. Stowell, "Computational bioacoustics with deep learning: a review and roadmap", PeerJ, vol. 10, pp. e13152, 2022. 

[23] J. Hamer, E. Triantafillou, B. Van Merrienboer, S. Kahl, H. Klinck, T. Denton, et al., "Birb: A generalization benchmark for 

information retrieval in bioacoustics", arXiv preprint, 2023. 

[24] R. Li, J. Liang and H. Phan, "Few-shot bioacoustic event detection: Enhanced classifiers for prototypical 

networks", Proceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022 Workshop 

(DCASE2022), November 2022. 

[25] J. Liang, X. Liu, H. Liu, H. Phan, E. Benetos, M. D. Plumbley, et al., "Adapting Language-Audio Models as Few-Shot 

Audio Learners", Proc. INTERSPEECH 2023, pp. 276-280, 2023. 

[26] I. Nolasco, B. Ghani, S. Singh, E. Vidaña-Vila, H. Whitehead, E. Grout, M. Emmerson, F. Jensen, I. Kiskin, J. Morford et 

al., "Few-shot bioacoustic event detection at the dcase 2023 challenge", arXiv preprint, 2023. 

[27] J. Liang, H. Phan and E. Benetos, "Learning from taxonomy: Multi-label few-shot classification for everyday sound 

recognition", ICASSP 2024 – 2024 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 

pp. 1-5, 2024. 

[28] P. Mangal, A. Rajesh and R. Misra, "Big data in climate change research: opportunities and challenges", 2020 International 

Conference on Intelligent Engineering and Management (ICIEM), pp. 321-326, 2020. 

[29] C. Poepel, K. Finger, N. Peters and B. Edler, "Exploring a long-term dataset of nature reserve ambisonics 

recordings", Proceedings of the 17th International Audio Mostly Conference, pp. 84-87, 2022. 

[30] K. Darras, N. Pérez, Mauladi, L. Dilong, T. Hanf-Dressler, M. Markolf, et al., "ecosound-web: an open-source online 

platform for ecoacoustics [version 2; peer review: 2 approved]", F1000 Research, vol. 9, March 2023. 

 


