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Abstract:  

At present, there have been many studies on the application of deep learning algorithms in defect detection work. Based on the 

object detection algorithms introduced earlier, a defect image recognition system is constructed to detect various types of 

defects in the converter, which can save manpower and material resources and improve the safety of this work. However, deep 

learning algorithms require a certain amount of valid samples to be effective. However, in actual operation, it is difficult to 

collect defect images of the commutator, which means that there are situations where the requirements of deep learning 

detection algorithms cannot be met. This article aims to explore a feasible data augmentation scheme, which is to generate 

effective samples through generative adversarial networks. This article will investigate two classic image generation methods 

based on Generative Adversarial Networks (GANs). And apply it to the field of generating defect images for commutators, 

propose a method for generating defect images in a directional manner, and compare it with the above two methods. The 

experimental results show that our method has a higher FID value compared to the above two methods, and has a more similar 

data distribution compared to real images. 

Keywords: GAN, Defect image, DCGAN 

IMAGE GENERATION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORK METHOD 

Theoretical Description of the Method of Generative Adversarial Network 

The Generative Adversarial Network [1] was first proposed by Goodfellow in 2014. He proposed a new framework for 

identifying generative models through adversarial processes. There are two parts: 1) the model used to capture the data 

distribution is called the generation model G; 2) the model used to estimate the probability that the sample comes from 

the training data rather than G is called the discriminator model D, the training process of the generator G is to maximize 

the error probability of the discriminator D, while the training process of the discriminator D is to minimize it. This 

framework can be thought of as a minimal duo game. In the space of any function G and D, there is a unique solution. G 

restores the training data distribution, where D is equal to 1/2. In the case where G and D are defined by multi-layer 

perceptrons, the entire system can be trained with back propagation. However, there are some problems in the GAN 

model, including the instability of training. Therefore, various improved versions of GAN are usually used in practical 

application, instead of using the original GAN directly. In various improved versions of GAN, Deep Convolution 

generative adversarial network (DCGAN for short) [2] is introduced into the generative adversarial network by adjusting 

the network structure, thus obtaining good results in image generation. Wasserstein GAN [3] improves the loss function 

in the GAN model from the theoretical point of view, thus effectively improving the instability in the model training 

process. The following two variants of GAN are described in more detail. 

(1) DCGAN: The deep convolution generative adversarial network (DCGAN) is one of the more successful and commonly 

used network designs of GAN (as shown in Figure 1). Compared with the original generative adversarial network, it 

mainly uses the convolution layer instead of the maximum pooling layer for down-sampling, eliminates the full 

connection layer and uses batch normalization. From the perspective of view of optimization the model structure, it uses 

convolution steps and transposed convolution [4] for down-sampling and up-sampling to make the network training 

smoother. The original GAN can learn better image features after training, but it is very unstable during training. At the 

same time, generating a model produces meaningless images in many cases. However, DCGAN can solve the unstable 

problem of GAN training to a certain extent. 
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Figure 1. DCGAN network model 

As can be seen from the above figure 1, two new convolution modes, namely deconvolution and step-length convolution, 

are adopted instead of pooling operation in DCGAN. Deconvolution operation is used to realize image upsampling in the 

generation model, and in the discrimination model, the step-size convolution is used instead of the pooling operation to 

realize the down-sampling of the image. For the training of the DCGAN network, the generator and discriminator have 

different weights and bias sets. The optimization procedure associated with the discriminator minimizes its loss function 

𝐿𝐷(𝜃, 𝜙) by changing its parameter set. Similarly, the optimization process associated with the generator is to minimize 

its loss function 𝐿𝐺(𝜃, 𝜙) by changing its parameter set. The goal of the generator G is to learn the distribution of the real 

data and then generate samples that are as similar as possible to the real samples so that the discriminant network D cannot 

distinguish them. The input to the generator G is random Gaussian noise 𝑍 = (𝑍1, 𝑍2, … , 𝑍𝑚) and the output is a sequence 

of synthesized samples𝐺(𝑍) = (𝐺(𝑧)1, 𝐺(𝑧)2, … , 𝐺(𝑧)𝑚). The goal of the discriminator D is to distinguish whether the 

input data is a real sample x or an output sequence 𝐺(𝑍) of G. If the input data is a real sample x, then D output 1, if the 

input data is the output sequence 𝐺(𝑍) of G, then D output 0, the loss function of DCGAN is shown in Equation (1), and 

the optimization objective is shown in Equation (2).  

𝐿(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]   (1) 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐿(𝐷, 𝐺)                                                              (2) 

One of the training features of DCGAN is alternate training of two networks. When one network is trained, the parameters 

of the other network are fixed. For the training of the G network, the goal is to be as close as possible to 1, so its 

optimization function is shown in Equation (3). 

𝑚𝑖𝑛𝐺 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]    (3) 

When the discriminator D is trained, the loss function of the network consists of two parts, namely the real sample and 

the generated sample of G. For the real sample x, the output of D shall be as close to 1 as possible, and for the output 

sequence 𝐷(𝑥) of G, the output of D shall be as close as possible to 0, so the optimization function is shown in Equation 

(4). 

𝑚𝑎𝑥
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]                              (4) 

The goal of DCGAN training is to achieve Nash equilibrium, which describes the game states in non-cooperative games 

[5]. No part can improve its score simply by changing its strategy. Nash equilibrium is the equilibrium state of the game 

between generator and discriminator. In this state, the distribution Q of the generated samples matches the distribution P 

of the real data, and the discriminator cannot distinguish Q from P. Therefore, whether the input of D is real data or 

generated data, the output of D is 0.5 in the Nash equilibrium state [6-7]. As mentioned above, batch normalization is 

adopted in DCGAN, which mainly defines the input batch as 𝐵 = {𝑧1, 𝑧1, … , 𝑧𝑚}  and then sets two learning 

parameters𝛾, 𝛽. Finally, output the result𝐵𝑁𝛾𝛽(𝑧𝑖). 

While making the above improvements, DCGAN also uses the tanh activation function on the output layer of the generator 

and Leaky ReLU [8] activation function in the discriminator. The above operations make the training process more stable 

and further improve the results of the model. 

 (2) Wasserstein GAN: The above DCGAN network model is a relatively popular and successful variant of GAN in recent 

years. Corresponding to it, there is another variant of generative adversarial network, which is different from DCGAN in 
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terms of structure innovation of generative adversarial network. Its purpose is to fundamentally solve the problem that 

generative adversarial network is difficult to train. In order to make the training process more stable, Wasserstein GAN 

(WGAN) was proposed. In WGAN there is a new loss function derived from the Wasserstein distance [9], which is used 

to measure the distance between two probability distributions. In generative adversarial network, that essence of a 

generator is to generate images that are similar to the real image or want to be distributed, and the similarity between the 

generate image and the original image can be expressed by the distance of the distribution, that is, the closer the distance 

is, the more similar they are. So it seems more appropriate to measure generator by distance. The Wasserstein distance is 

shown in Equation (5): 

𝑊(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓
𝛾∈∏(𝑃𝑟 ,𝑃𝑔)

𝐸(𝑥,𝑦)~𝛾[‖𝑥 − 𝑦‖]    (5) 

Where ∏(𝑃𝑟 , 𝑃𝑔) represents the collection of all federated distributions 𝛾(𝑥, 𝑦) and 𝛾(𝑥, 𝑦)represents the distance to 

transform the distribution 𝑃𝑟  into the 𝑃𝑔  distribution. ‖𝑥 − 𝑦‖  represents the distance between samples, then 

𝐸(𝑥,𝑦)~𝛾[‖𝑥 − 𝑦‖] is the expected value of distance for all joint distributions. The loss function of WGAN can be 

expressed by Kantorovich-Rubinstein duality, as shown in Equation (6). 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷∈𝐷

𝐸
𝑥~𝑃𝑟

[𝐷(𝑥)] − 𝐸
𝑥~𝑃𝑔

[𝐷(𝐺(𝑥̃))]                                                        (6) 

Where D is the set of 1-Lipschitz functions from which the discriminator D calculates the distance between the joint 

distribution samples. 

Although the improved WGAN solves the problem of training instability and improves the quality of the generated image, 

there are still some problems compared with the original GAN [10]. The weight clipping in WGAN limits the performance 

of the network, that is, it is very difficult for the network to simulate those complex functions, and only some relatively 

simple functions can be produced. In addition, the weight clipping needs to be set by you. Improper setting will cause 

gradient explosion and gradient disappearance. In order to avoid the above problems, the gradient penalty is added, which 

can be expressed as [11]: 

𝜆 𝐸
𝑥~𝑃𝑥̃

[(‖𝛻𝑥𝐷(𝑥̃)‖2 − 1)2]                                                                          (7) 

The gradient penalty limits the gradient weights to [-c, c], where c is the threshold, to prevent gradient disappearance and 

explosion problems. 

Generation of Defect Image of Commutator Cylindrical Expansion Plane Based on DCGAN and WGAN Method 

Data set 

Some defects will inevitably appear in the process of commutator from raw material to processing, which will affect the 

quality of commutator. Our purpose is to carry out quality inspection on commutator during production process or before 

leaving factory to retain qualified commutator products and reject unqualified commutator products. In this paper, the 

defect detection is carried out on the cylindrical area of the commutator. Figure 2 is the actual diagram of the commutator: 

 

Figure 2. Physical drawing of commutator 

As can be seen from Figure 2, due to the orientation of the inside of the commutator, the outer circle area is a encircle 

image, and it is difficult for us to observe its defects with naked eyes. In order to better introduce the depth learning 

algorithm, the professional equipment which can be used for 360-degree shooting is used to take the cylindrical developed 

image of the commutator for research. Figure 3 shows the outer cylindrical development of the commutator. 
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Figure 3. Development of outer cylinder of commutator  

In deep learning, besides network structure, objective function and training strategy are very important to the effect of the 

model; the quality of data set has great impact on the final result. Better quality data sets can speed up the training of the 

network and improve the training effect of the network. Therefore, we first prepare the commutator data set before 

conducting the experiment. Firstly, the image is normalized and uniformly set to a fixed size because the neural network 

requires a fixed size to input the image. In this paper, four kinds of defects are defined according to the imaging 

characteristics of the defective products, which are (1) cylindrical slag defect, (2) cylindrical burr defect, (3) oil stain 

defect and (4) cylindrical imprinting defect. The following Figure 4 shows the four defects: 

 

 

Figure 4. Image defect display of commutator cylindrical expansion (a) cylindrical slag inclusion defect (b) cylindrical 

imprinting defect (c) cylindrical burr defect (d) greasy dirt defect  

After we completed the normalization of the image, the size and image quality of the image data set of the cylindrical 

expansion diagram outside the commutator met the requirements of model training. In order to diversify the data set, we 

use the traditional data enhancement method to expand the image of commutator outer circle for the first time, and increase 

the number of commutator outer circle expansion image. 

Horizontal Flip: We flip the image horizontally. The flipped image is the mirror image of the original image. The mirror 

image after horizontal flip has no effect on the quality of the image. As an example, we compare the images before and 

after turning (see figure 5).  

(a) (b)
 

Figure 5. Horizontal flip (a) Original image (b) Image after horizontal flip  

Vertical Flip: We flipped the image vertically, which means we rotated the original image 180 degrees. The mirror image 

after the vertical flip has no effect on the quality of the image. The following figure 6 shows a vertical flip of the image 

of the commutator's outer circle expansion.  

(a) (b)
 

Figure 6. Vertical flip (a) Original image (b) Image after vertical flip  
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Zoom: Zoom in or out of the image. When enlarging, the size of the enlarged commutator outer circle expansion image 

will be larger than that of the original image. We trim the image according to the size of the original image, and the 

reduction refers to filling the edge part. Because no suitable filling scheme is found in the experiment, we only enlarge 

the image of the outer circle of the commutator. The enlarged image in (a) of Figure 7 is shown in Figure 7(b).  

(a) (b)
 

Figure 7. Enlarged image (a) Original image (b) Image enlarged  

Lab environment setup 

This section mainly analyzes the image generation results of DCGAN method and WGAN-gp method. In this paper, 

many image tools are used in the study of commutator cylindrical defect image, as shown in Table 1: 

Table 1. Tools used in the algorithm 

Items Content 

Operating system Linux Ubuntu 16.04、Windows 10 

Computing Architecture CORE i7-9750h + NVIDIA GTX 1080Ti 

In-depth learning framework Tensorflow, Keras 

Image process Python 3.7、OpenCV 3.0 

 

Experimental results and analysis  

We trained using DCGAN and WGAN, respectively, and output the results of the model generation based on the above 

two commutator cylindrical expansion images, as shown in Figures 8 and 9. Figure 8 is a developed image of the 

commutator cylindrical generated by DCGAN; and Figure 9 is an expanded image of the commutator cylindrical 

generated by WGAN. 

 

Figure 8. DCGAN-generated developed image of commutator cylindrical 
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Figure 9. Developed image of commutator cylindrical generated by WGAN  

As can be seen from Figures 5 and 6, both the DCGAN and WGAN methods can extend the commutator outer circle 

expansion image data set; the outer circle expansion image with different defects can be directionally generated. The 

DCGAN method has a better contour than the WGAN method, for example, the cylindrical imprint defect of the 

commutator developed image generated by different methods in Figure 8 and Figure 9, the cylindrical imprint defect 

generated by the DCGAN method has better detail display compared with the cylindrical imprint defect generated by the 

WGAN method, and compared with the original image, the DCGAN method is more visually similar, and the generated 

image is more delicate. However, the DCGAN method also has a problem that the commutator cylindrical developed 

image generated by the DCGAN cannot generate the specified defect image and can only be randomly generated. This 

obviously cannot be used as a data set extension for specifying defects.  

ORIENTATION DEFECT IMAGE GENERATION METHOD BASED ON CONDITIONAL CONSTRAINT 

In section 2, we evaluated the images generated using the outer circle expansion image generation method based on 

WGAN commutator and the outer circle expansion image generation method based on DCGAN commutator. It has been 

found that both methods can produce a better image of the commutator's outer circle. The image quality of the image 

generation method based on DCGAN commutator is better, but the generated image cannot be generated according to the 

specified defect, and the generated image is random. In order to generate the image of the outer circle of the commutator 

with a specified defect, we construct a model for generating the image of the outer circle of the commutator which can 

directionally generate the defect by improving the generative adversarial networks and adding some constraints. 

Principle of Generative Adversarial Network Based on Conditional Constraints 

Because the traditional generative adversarial network has the ability of random generation, when a plurality of kinds of 

images is trained at the same time, the types of the final generated images are also random, and the specified images 

cannot be generated. Because of its freedom, it limits its application in directional data expansion. 

Therefore, in order to be able to generate the image of the outer circle of the commutator with specified defects, we 

consider the class label in the supervised training. First, we add a condition constraint in the GAN network. We change 

the GAN without supervision learning into the supervised learning process with condition constraint. As shown in Figure 

10, we add a condition y to both the generator G and the discriminator D to constrain them. In the generator, the noise z 

is not only input only before the network starts. But the constraint y is also input into the network as additional 

information. Similarly, in the discriminators, we input the image and the corresponding condition y in series into the 

classifier network. The effect of the condition y is to constrain the data generation process to produce an image of the 

commutator's outer circle expansion for the specified defect. 

A conditional generative adversarial network can be understood as an extension of the original countermeasure generative 

adversarial network, both the generator and the discriminator adding an additional condition y, which is class information, 

so as to realize the specified output of the image meeting the condition y constraint. In the generator, the original input 

noise z and the conditional information y are combined to form a joint hidden layer representation. Like the original 

generative adversarial network, the objective function of the conditional generative adversarial network is a minimal 

maximum game with conditional probability. After the condition y is added, the loss function of the generative adversarial 

Network is shown in Equation 8: 
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𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐿(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷 (𝑥|𝑦)] + 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧|𝑦)))]  (8) 

Where, y is the conditional information, 𝐺(𝑧|𝑦) means that conditional constraint y is added to the generator, and 𝐷(𝑥|𝑦) 

means that corresponding conditional constraint y is added to the discriminant. 

Condition-Constraint-Based Network Architecture of Commutator Outer Circular Defect Expansion Image 

Generation 

Based on the principle of constraint generative adversarial network, we define the image generative adversarial network 

of commutator cylindrical defect expansion based on condition constraint. We construct the network in this paper by 

combining the design of convolution neural network in DCGAN network. The DCGAN network mentioned above 

abandons a large number of full-connection and pooling layers in the traditional neural network and adopts a full-

convolution neural network for sampling, and the calculation speed is accelerated. As shown in Figure 11, the commutator 

cylindrical defect expansion image generative adversarial network based on conditional constraints is composed of two 

parts, namely a generator G and a discriminator D. 

 

G(Z|y)

y

x

y D(x|y)

Random Noise

Real

Fake

 

Figure 10. Condition generative adversarial networks architecture  

 

Figure 11. Image generative adversarial network of commutator outer circular defect based on conditional constraints  

For the conditional constraint y added in the generator and the discriminator for the purpose of generating a commutator 

cylindrical expansion image of a specified defect, class label information is added in the generation process of the image, 

i.e., in the generator model to guide the generation process of constraint data, thereby generating the commutator 

cylindrical expansion image of the specified defect, and among the discriminators, the discriminator model discriminates 
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whether the commutator cylindrical expansion image generated by the generator is a real image or a generated image and 

also judges whether the image matches the condition y, i. e. whether or not it belongs to a defective image in the category. 

The commutator cylindrical defect expansion image generative adversarial network based on condition constraint mainly 

comprises a generator and a discriminator. In this paper, the generator and the discriminator in the generative adversarial 

network are constructed by combining the concept of a convolution neural network, and the original generative adversarial 

network model is no longer used as the infrastructure of the commutator cylindrical defect expansion image generative 

adversarial network, In the following, we will describe the generator network and the discriminator network in detail. 

Generator network structure  

The network architecture of the generated model mainly includes input layer, convolution layer and full connection layer, 

but the convolution layer in the generated model is fractional step convolution. The activation function is nonlinear 

activation function ReLU, and the batch normalization layer is added after each convolutional layer. The batch 

normalization operation can effectively prevent the disappearance of gradient, make the new data distribution more close 

to the real data distribution, and improve the stability of training. The generator structure is shown in Figure 12: 

 

Figure 12. Generator model structure 

The details of the convolution layer in the generated model are shown in the table 2 below. 

Table 2 Generator model details 

Operation Convolution kernel Step length Output channel 

Convolution upsampling 

layer 
5×5 1 512 

Convolution 3×3 1 256 

Convolution upsampling 

layer 
5×5 1 256 

Convolution 3×3 1 128 

Convolution up-sampling 

layer 
5×5 1 128 

Convolution 3×3 1 64 

Convolution up-sampling 

layer 
5×5 1 32 

Convolution 3×3 1 16 

Convolution up-sampling 

layer 
5×5 1 3 
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Discriminator network structure  

The input of the discrimination model is the condition information y and the real image or the condition information y 

and the generated image. In the network architecture of discriminant model, it is mainly composed of convolution layer. 

And leaky relu is used in each convolution layer as a non-linear activation function as shown in Figure13,  

 

Figure 13. Model structure of raw discriminator 

Specific details of convolution layer in the discriminant model are shown in the following table 3. 

Table 3. Generator model details 

Operation Convolution kernel Step Size Output channel 

Convolution 3×3 1 32 

Convolution 5×5 1 64 

Convolution 3×3 1 128 

Convolution 5×5 1 128 

Convolution 3×3 1 256 

Convolution 3×3 2 512 

 

Experiment and Analysis 

Experiment environment setup 

In this paper, many image tools are used in the study of commutator cylindrical defect image, as shown in Table 4: 

Table 4. Tools used in the algorithm 

PROJECTS Content 

Operating system Linux Ubuntu 16.04、Windows 10 

Computing Architecture CORE i7-9750h + NVIDIA GTX 1080Ti 

In-depth learning framework Tensorflow, Keras 

Image proces Python 3.7、OpenCV 3.0 

 

Evaluation criteria 

At present, the image generated by the countermeasure generative adversarial network is mainly evaluated through two 

aspects, namely a qualitative standard and a quantitative standard, wherein the qualitative standard is mainly based on 

visual observation, and the quantitative standard mainly adopts a FID score which reflects the difference between the 

distribution of real data and the distribution of generated image data. The smaller the difference is, the more realistic the 

generated image is; conversely, the larger the FID score is, the resulting results are unsatisfactory. The calculation formula 

is as follows: 

 𝑑2 ((𝑚𝑟 , 𝐶𝑟), (𝑚𝑔, 𝐶𝑔)) = ‖𝑚𝑟 −𝑚𝑔‖2
2
+ 𝑇𝑟 (𝐶𝑟 + 𝐶𝑔 − 2(𝐶𝑟𝐶𝑔)

1

2)  (10) 
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Where, d represents FID distance is 𝑚𝑟 , 𝐶𝑟the feature mean and covariance matrix of the real image, and 𝑚𝑔, 𝐶𝑔is the 

feature mean and covariance matrix of the generated image. FID has more flexible data requirements and can reflect the 

difference between the real image and the generated image more effectively.  

Results and analysis 

In the experiment, we compare WGAN-based and DCGAN-based image generation methods, which are compared with 

the method proposed in this paper. First, Figure 14~Figure 17 show the comparison between the result images generated 

by different methods and the real image. Because the two comparison methods cannot generate the defect image 

directionally, Based on the method presented in this paper, we select the corresponding defect images in DCGAN and 

WGAN respectively. 

From Figure 14 to Figure 17, it can be seen that the above three methods can correctly simulate the expansion image of 

the cylindrical defect of the commutator and generate a more vivid simulation image. However, compared with the other 

two methods, the generated image of WGAN-based commutator cylindrical defect expansion image generation method 

is more blurred, which does not vividly express the shape and appearance of defects, so it can be said that the fidelity is 

not high, and WGAN only learns part of the characteristics. However, as can see from Figure 15 that the generated image 

generated by the DCGAN-based commutator cylindrical defect expansion image generation method better simulates the 

shape of the defect. Compared with WGAN, the image is more realistic than the WGAN. However, compared with the 

original image, the image is distorted which is not in accordance with the common sense. Although the accuracy is high 

and the image is not blurred, but there is also a certain shape mismatch. Since the DCGAN method cannot directionally 

generate the defect image, the defect category of the generated image cannot be controlled. However, the defect image 

generated by this method is similar to the real image. The visual effect is less different from that of the real commutator, 

and the performance of the defect image is improved compared with that of the DCGAN model. Compared with the 

DCGAN model, the visual effect is improved. 

 

Figure 14. Real image 

 

Figure 15. Example of defect expansion image generation method for commutator cylindrical based on WGAN 
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Figure 16. Example of defect expansion image generation method for commutator cylindrical based on DCGAN 

In order to verify the above-mentioned judgment based on visual quality more accurately, FID is used in this paper to 

quantitatively compare the defect images generated by the above three methods, so as to determine the best defect image 

generation model. We calculated the FID for the above three methods and recorded in Table 5: 

 

Figure 17. Example of the generation method in this paper  

Table 5. FID values for three different defect generation methods 

Defect generation model 
Cylindrical slag 

defect 

Cylindrical imprinting 

defect 
Cylindrical burr defect Oil stain 

DCGAN 157 169 89 140 

WGAN 241 219 135 178 

The proposed method 85 67 74 104 

 

As can be seen from Table 5, that the larger the FID value, the greater the difference in data distribution between the 

generated image and the real data; the proposed method in this paper has the lowest FID value on the generated image of 

four defects, that is to say, the proposed method has better defect image generation effect than the above two comparison 

methods, and can generate the generated images closer to the real image data distribution. While the WGAN has the 

highest FID score, which is consistent with our visual observation. WGAN rubber is quite different from the original 

image, and WGAN performance needs to be improved. 

SUMMARY 

In this paper, that principle of image generation method based on generative adversarial network is introduced, and then 

two classical GAN variant algorithms are introduced. Then we apply the above two methods to the internal control defect 

expansion image generation method of commutator, and find that it cannot generate data directionally. Therefore, this 

paper proposes a new method which can generate defect image directionally, and compares with the above two methods. 
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The experimental results show that the method in this paper has higher FID value than the above two methods, and more 

similar data distribution than the real image. 
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