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Abstract:  

The effective application of electric power big data can better reflect the influencing factors of electricity demand and its 

inherent laws. This paper introduces big data and its related technology to the study of electricity demand. By selecting variables 

from five aspects such as historical electricity consumption by industry, weather, economy, industry attributes, and holidays, 

stacking fusion technology is used to construct a regional electricity demand situational awareness model to predict industry 

and regional electricity consumption trends. The empirical evaluations demonstrate that the integration model possesses notable 

capacity for combining diverse factors, thereby enhancing the precision of electricity consumption forecasts. 
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INTRODUCTION 

As China's modern market economy surges ahead and international collaboration and rivalry intensify, the significance of 

electricity data mining and analysis within the power market escalates, playing a pivotal role in the strategic planning and growth 

of power enterprises. Accurate power demand characterization has not only emerged as a vital aspect of electric power 

enterprises' production, operation, planning, and management work but also plays a crucial role in guiding their operational 

planning.[1] There are numerous influencing factors in electricity demand forecasting, and domestic and international economic 

turbulence further complicates the process, making electricity demand forecasting even more challenging.[2] For instance, 

economic prosperity, climate, population density, and so forth, are all influential factors in electricity demand forecasting. 

Furthermore, since this year, international trade disputes have intensified and are expected to continue escalating in the 

foreseeable future, which will significantly impact regions with a high proportion of exports. At the same time, the acceleration 

of industrial structure upgrading, driven by strong national policies, has made it more difficult to predict the power demand of 

various regions and industries.[3] 

Electricity, as the cornerstone of national economic development, plays an irreplaceable role in fostering investment, stabilizing 

growth, adjusting structures, enhancing people's livelihoods, and ensuring security. Consequently, economic growth is the 

earliest and most frequently cited factor explaining electricity demand or energy demand in existing studies. [4-8] Eldowma et 

al. (2023)[9] integrated the autoregressive distributional lag-bounds testing approach with econometric methodologies to delve 

into the interplay among electricity usage, CO2 emissions, overall population dynamics, and economic expansion in Sudan. 

Studies have shown that Sudan's growing population has contributed to economic expansion and, in turn, increased electricity 

demand. Xie Pinjie et al. (2020) [10] established a long-term equilibrium link between China's electricity use, economic 

expansion, and urbanization trends, utilizing data spanning 1978-2019. Their analysis revealed a bidirectional Granger causality 

between economic expansion and electricity use, both in the long and short term. Similarly, Adedoyin and Ilhan (2020) [11] 

investigated the relationship in Sub-Saharan Africa from 1971 to 2017, uncovering a robust positive correlation between 

electricity use and economic expansion. 

In recent years, as meteorological statistics have become increasingly refined, the impact of meteorological factors on power 

demand has also emerged as a research hotspot for many scholars. Zhang et al. (2023) [12] introduced a CatBoost-PPSO hybrid 

model, leveraging weather variables to forecast electricity demand with heightened accuracy in short-term scenarios. Xu et al. 

(2022) [13] utilized structural equation modeling to discern the intricate direct and indirect links between electricity use and 

economic expansion in China, affirming a positive influence. Zhou (2020) [14] refined short-term load forecasting for power 

systems by identifying key meteorological factors and developing a method that achieved high precision through error analysis. 

Guo et al. (2020) [15] employed spatial econometrics to identify the multifaceted drivers of electricity demand in China, 

uncovering both enhancing (e.g., economic growth, population) and moderating (e.g., technological advancements, industrial 

structure optimization) factors. 

The forecasting of electricity demand is inseparable from reasonable forecasting methods and models. [16-23] Prashanth and 

Srikanth (2023) [24] devised a predictive model that combines Random Forest (RF) and Bi-Directional Gated Recurrent Unit 
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(Bi-GRU) for enhanced accuracy. Khan et al. (2022) [25] introduced a short-term electricity load forecasting model, integrating 

data cleansing and a deep residual convolutional neural network, demonstrating its efficacy. Liu et al. (2020) [26] proposed a 

short-term bus load forecasting approach, blending XGBoost and Stacking models, with system parameters optimized by particle 

swarm optimization, validated through case studies. 

In addition to economic growth and climate change, scholars have also explored the impact of a range of factors, including 

important holidays [27], industrial structure [28], information and communication technology (ICT),[29] oil prices,[30] and 

urbanization [31], on electricity demand. Consequently, they have improved the forecasting model of electricity demand, leading 

to more reasonable and accurate predictions. 

To enhance the relevance to contemporary power system demands, prior research foundations are expanded by incorporating 

big data and related technologies into electricity demand analysis. This involves exploring the interplay between electricity use 

and diverse external economic and meteorological factors. Variables are meticulously selected across five dimensions: historical 

electricity consumption, weather patterns, economic indicators, industrial characteristics, and holiday effects. Based on the three 

basic models of XGBoost, support vector regression, and random forest, the regional electricity demand situation awareness 

model is constructed by using the stacking fusion technology to predict the industry and regional electricity consumption trend. 

The innovations of this paper are as follows: (1) In terms of the research object, most research on electricity consumption in the 

industry focuses on the sector, industry, or even regional level, which results in a significant amount of information about 

individual users remaining unextracted and rarely analyzed in terms of their electricity consumption behaviors. This paper 

proposes taking the individual enterprise user as the research object, which offers a finer granularity compared to other similar 

studies, enabling the analysis of the user's electricity consumption behavior. Furthermore, it aims to address the prediction error 

in the user's prediction results through correction and analysis, which will significantly improve the accuracy of the model. (2) 

By utilizing stacking technology to construct a fusion model, we aim to compensate for the shortcomings of a single model. This 

approach ensures that the fusion model's accuracy, reliability, and stability are superior to that of a single model. (3) We 

innovatively employ relative error as a loss function for model error correction, thereby enhancing the accuracy of the model's 

prediction results. 

MODEL 

Principle 

Stacking fusion is a multi-layer superposition of the model, and its architecture is usually composed of two layers. Specifically, 

the first layer is employed in processing the input data. The remaining layer is the inductive meta-learner, which is used to 

inductively fuse the output of the first layer to obtain the ultimate output.[24] Model fusion technology is used to fuse multiple 

base models to predict industrial electricity consumption, which can integrate and utilize the strengths of each individual, and 

avoid the disadvantages. It not only considers many factors for analysis but also deals with some random factors in the problem, 

which is more systematic and comprehensive than that of a single model. Specifically, the advantages of Stacking fusion 

technology include: (1) the prediction ability of the fusion model is greater than various single models, and the generalization 

ability is stronger; (2) can accomplish the transfer of knowledge; (3) can battle overfitting without a lot of parameter adjustment 

or feature selection; (4) it can improve machine learning effect and shorten operation time. 

Input Variables 

Since the electricity consumption data are obvious time series data, the historical electricity sales have a great influence on the 

forecast of electricity consumption in the current period. In addition, weather, economy, industry attributes, holidays, and other 

factors will more or less affect the size of electricity consumption. Therefore, the power demand situational awareness model 

selects variables from five aspects, including industrial historical electricity consumption, weather, economy, industrial 

attributes, and holidays. 

Base Models 

XGBoost 

XGBoost is an integrated model of optimized classification regression trees, described as follows: 

𝑦𝑖̂ = ∑ 𝑓𝑡(𝑥𝑖), 𝑓𝑡𝜖𝐹𝑡
𝑡=1                                                                                  (1) 

where 𝑡 is the count of trees, 𝑓𝑡 is one of the functions in 𝐹, and 𝐹 represents the set of CART components. The objective function 

is shown as follows: 
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𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂) + ∑ Ω(𝑓𝑡)𝑡
𝑖=1

𝑛
𝑖=1                                                                 (2) 

The parameter 𝑓𝑡 is a control parameter. The difficulty of training 𝑓𝑡 is much higher than the training of parameters in general 

machine learning. Therefore, an addition strategy is adopted: fix the learned model and add one tree to the model at a time. The 

forecast obtained for the TTH time is denoted as 𝑦𝑖
(𝑡)̂

, and the objective function is expressed as follows: 

𝑂𝑏𝑗(𝑡) == ∑ 𝑙 (𝑦𝑘 , 𝑦𝑖̂
(𝑡−1)

+ 𝑓𝑡(𝑥𝑘)) +𝑛
𝑘=1 Ω(𝑓𝑡) + 𝐶                                   (3) 

Using MSE as the loss function, and then the objective function can be expressed as: 

𝑂𝑏𝑗(𝑡) = ∑ [𝑙(𝑦𝑘 , 𝑦𝑘
(𝑡−1)) + 𝑔𝑘𝑓𝑡(𝑥𝑘) + 

ℎ𝑘𝑓𝑡
2(𝑥𝑘)

 2
]𝑛

𝑘=1 + Ω(𝑓𝑡) + 𝐶                                (4) 

Define the complexity Ω(𝑓) of the model to further improve the definition of 𝑓(𝑥): 

𝑓𝑡(𝑥) = 𝑤𝑚(𝑥), 𝑤𝜖𝑅𝑇 , 𝑚: 𝑅𝑑 → {1, … , 𝑇}                                                                   (5) 

where 𝑤 denotes the scores on a leaf, 𝑚 is a mapping, and 𝑇 is the amount of leaves. Furthermore: 

Ω(𝑓) = ΥT +
𝛼 ∑ 𝑤𝑡

2𝑇
𝑡=1

2
                                                                                           (6) 

After reconstructing the tree model, the objective function after adding the TTH tree is: 

𝑂𝑏𝑗(𝑡) ≈ ∑ [𝑔𝑘𝑤𝑞(𝑥𝑘) +
1

2
ℎ𝑘𝑤𝑞(𝑥𝑘)

2 ]

𝑛

𝑘=1

+ ΥT +
𝛼 ∑ 𝑤𝑡

2𝑇
𝑡=1

2
 

= ∑ [(∑ 𝑔𝑙

𝑙∈𝐼𝑗

)𝑤𝑗 +
∑ ℎ𝑙𝑙∈𝐼𝑗

+ 𝛼

2
𝑤𝑗

2]

𝑇

𝑗=1

+ ΥT 

= ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝛼)𝑤𝑗

2]𝑇
𝑗=1 + ΥT                                                                  (7) 

The final objective function is a quadratic function with respect to 𝑤𝑗 , and its minimum point and the minimum value are 

respectively: 

𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗+𝛼
                                                                                          (8) 

𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝛼

𝑇
𝑗=1 + ΥT                                                                     (9) 

Equation (9) is applied to evaluate the tree structure. More smaller the value is, the better the structure is. Therefore, all 

possibilities can be tried and the optimum can be selected. However, this method is time-consuming. Therefore, in the process 

of solving, only one layer of the tree is optimized at a time. Assuming that a leaf splits into two leaves, its score increases as 

follows: 

𝐺𝑎𝑖𝑛 =
1

2
[𝐺𝐿

2 1

𝐻𝐿+𝛼
+ 𝐺𝑅

2 1

𝐻𝑅+𝛼
+ (𝐺𝐿 + 𝐺𝑅)2 1

𝐻𝐿+𝐻𝑅+𝛼
] − 𝛶  (10)  

If the gain is less than Υ, we do not split this leaf. 

Support vector regression 

Support vector regression (SVR) can be formalized as: 

𝑚𝑖𝑛
𝜔,𝑏

1

2
||𝜔||2 + 𝛿 ∑ 𝜁𝜖(𝑓(𝑥𝑖) − 𝑦𝑖)𝑚

𝑖=1                                                                    (11) 

where 𝛿 is the constant. 𝜁𝜖  is the 𝜖-insensitive loss function, 

𝜁𝜖(𝑧) = {
0, 𝑖𝑓|𝑧| < 𝜖

|𝑧| − 𝜖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                          (12) 

Introducing the slack variables 𝜉𝑚 and 𝜉𝑛̂, then 
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min
𝜔,𝑏,𝜉𝑚,,𝜉𝑛̂

1

2
||𝜔||2 + 𝛿 ∑ (𝜉𝑚, + 𝜉𝑛̂)

𝑙

𝑚=1

 

𝑠. 𝑡. 𝑓(𝑥𝑚) − 𝑦𝑚 ≤ 𝜖 + 𝜉𝑚                                                                      (13) 

𝑦𝑚 − 𝑓(𝑥𝑚) ≤ 𝜖 + 𝜉𝑛̂ 

𝜉𝑚 ≥ 0, 𝜉𝑛̂ ≥ 0, 𝑚 = 1, … , 𝑙 

Using the Lagrange multiplier 𝜇𝑚 ≥ 0, 𝜇𝑛̂ ≥ 0, 𝛽𝑚 ≥ 0, 𝛽𝑛̂ ≥ 0, the dual problem is: 

𝑠. 𝑡. ∑ (𝛽𝑛̂ − 𝛽𝑚)

𝑙

𝑚=1

= 0 

0 ≤ 𝛽𝑛̂, 𝛽𝑚 ≤ 𝛿 

Finally, the solution is as follows: 

𝑓(𝑥) = ∑ (𝛽𝑛̂ − 𝛽𝑚)𝑥𝑚
𝑇 𝑥 + 𝑏𝑙

𝑚=1                                                               (14) 

Random forest 

The process of the random forest (RF) is depicted in Figure 1. 

All 
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Decision tree output

Output_1

Decision tree output

Output_2

Decision tree output

Output_i

Optimal 

categorization based 

on voting

 

Figure 1. Framework process of random forest algorithm 

The random forest uses the bootstrap sampling method with replacement to extract the training samples of each decision tree. In 

addition, the random forest adds the random selectivity of feature division on the basis of the Bagging method, that is, the 

decision tree selects the optimal feature according to the attribute division rule when selecting the feature of tree nodes, so there 

are different features used by each node in each tree. 

Construction of Stacking Fusion Model 

In this paper, the regional power demand situation awareness model based on Stacking technology is designed as a two-layer 

framework, which can not only ensure prediction accuracy but also shorten the operation time. The first layer is the basic layer 

of the system, which is composed of three different basic models, namely the XGBoost model, the SVR model, and the RF 

model. The second meta-model is multiple linear regression (MLR). The implementation step of the Stacking fusion framework 

is demonstrated in Figure 2: 
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Figure 2. Implementation process of Stacking fusion model method 

(1) The XGBoost model, SVR model, and RF model are trained by 5-fold cross-validation, that is, each model will be trained 5 

times. The particular training method is as follows: firstly, based on the idea of cross-validation, the input data is split into five 

segments, four of which are deemed to be training parts, and the other one is deemed to be testing. Four pieces of them were 

used for training each time, and the corresponding prediction result A was obtained by processing the test data. The prediction 

result B of the test set was obtained by predicting the test set data. After five training sessions, the five prediction results A are 

united into a single column, and then results B are averaged. Finally, we get the new data sets A and B, where the amount of A 

is the same as that of the training data. 

(2) Then, the constructed XGBoost, support vector regression, and random forest models obtained three data sets A and three 

data sets B. By combining the data of three A and three B, we can gain the new training set, as well as the new test set. 

(3) This model makes use of the multiple linear regression method to handle the new training set and the new test set. The specific 

structure is established as follows: 

0 1 1 2 2a a a k kay x x x    = + + +  + +                                     (15) 

where 0 1 2, , , k     are the regression coefficients to be determined, 0  is the regression constant, and   is the error 

random term. 

The pseudo-code for the Stacking algorithm is as follows: 

Input: training dataset𝐷 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑚  

Process 1: Learning sub-classifiers 

For t=1,…,T 

Learn ℎ𝑡(𝐷) 

end 

Process 2: Constructing a new dataset for prediction 

For t=1,…,m: 

𝑥𝑖
′ = {ℎ1(𝑥𝑖), … , ℎ𝑇(𝑥𝑖)} 

𝐷ℎ = {𝑋𝑖
′, 𝑦𝑖} 

Process 3: Learning meta-classifiers 

Learn 𝐻(𝐷ℎ) 

Output: integrated learning classifier H 
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EXPERIMENTS 

Data Source and Preprocessing 

Source 

The power and meteorological data in this paper come from the basic data platform of a power supply company in a certain 

province of China. Through data access, relevant power and weather information can be collected. The external economic data 

are mostly collected from the websites of the national, provincial, and municipal Bureau of Statistics and other relevant official 

websites and other third-party data platforms by means of manual or automatic download/collection or crawler acquisition. In 

addition, the data can be separated into two segments: the training part and the test part. According to the actual situation of the 

data, the period from January 2022 to November 2023 is the training set, and the period from December 2023 is the test set. 

Preprocessing 

Due to the sudden increase and decrease of industrial electricity consumption, which imposes a huge effect on the prediction 

ability in training processing, it is worthwhile to handle "outlier" treatment for such electricity consumption (outlier here refers 

to the relative anomaly of model data). However, in order not to affect the test effect of the test set, we only deal with the "outlier" 

of electricity consumption in the training set. 

The lack of electricity consumption imposes a certain effect on the prediction ability. To reduce the impact, we mainly employ 

the mean before and after to complete the missing part of electricity consumption in the training set and do not process the 

electricity consumption in the test set. 

Selection of input variable 

The results of input variable selection are demonstrated in tables 1, 2, 3, 4, and 5. 

Table 1. Characteristics of historical electricity consumption 

Electricity consumption characteristics Definition 

T_PQ_LAST Electricity consumption in the past month 

T_PQ_2 The mean electricity demand in the recent two months 

T_PQ_3 The mean electricity demand in recent three months 

T_PQ_4 The mean electricity demand in recent four months 

T_PQ_2_STD The standard deviation of electricity demand in the past two months 

T_PQ_3_STD The standard deviation of electricity demand in the past three months 

T_PQ_4_STD The standard deviation of electricity demand in the past four months 

T_PQ_3_CV Dispersion coefficient of electricity demand in the past three months 

T_PQ_4_CV Dispersion coefficient of electricity demand in the past four months 

T_PQ_3_MIN Minimum electricity demand in the past three months 

T_PQ_4_MIN Minimum electricity demand in the past four months 

T_PQ_3_MAX Maximum electricity demand in the past three months 

T_PQ_4_MAX Maximum electricity demand in the past four months 

T_PQ_1_RATE The rate of increase in electricity demand in the recent month 

T_PQ_2_RATE The rate of increase in electricity demand in the past two months 

T_PQ_3_RATE The rate of increase in electricity demand in the past three months 

LAST_SAME_TIME_PQ Electricity demand in the same period past year 

ES Historical electricity consumption scale 

T_PQ_PM Ranking of historical electricity consumption 

RUN_CAP Increase and decrease capacity 
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Table 2. Weather characteristic variables 

Characteristic of weather Definition 

MAXLAPSERATE Monthly maximum temperature 

MINLAPSERATE The minimum temperature in a month 

AVGLAPSERATE The mean temperature in a month 

AVGHUMIDITY Monthly mean humidity 

SUMPRECIIPITATIONFALL Accumulated monthly rainfall 

SUM10MMPRECIIPITATIONFALL Days with monthly accumulative rainfall of less than 10mm 

SUM25MMPRECIIPITATIONFALL The cumulative monthly rainfall is 10mm-24.9mm days 

SUM50MMPRECIIPITATIONFALL The cumulative monthly rainfall is 25mm-49.9mm days 

OVER50MMPRECIIPITATIONFALL Days with cumulative monthly rainfall above 50mm 

 

Table 3. Variables of economic characteristics 

Economic characteristics Definition 

GDP Gross regional domestic product 

PMI Manufacturing purchasing managers index 

PPI Ex-factory price indices of industrial product 

CPI Consumer price index 

EVA Added value of industries above designated size 

TRSCG Total retail sales of consumer goods 

 

Table 4. Variables of industry attributes 

Industry attributes Definition 

HYLB Secondary industry categories 

SFGY Whether industrial or not 

HYFQ Industry group number 

 

Table 5. Characteristic variables of holidays 

Characteristic Definition 

Year Year 

Mon Month 

Season Season 

Holiday Number of holidays 

 

Electric Power Demand Forecasting 

General situation 

Nowadays, the prediction precision to the total electricity sales in a province of China is about 96%, and the average forecasting 

precision to the electricity sales in various cities in a province of China is about 95%. The main problems affecting the predicted 

performance are the sudden increase and decrease of electricity sales data in some industries, too many null values (occasionally 

there is electricity), etc. 
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Industry electricity sales forecast 

General situation 

In the current industry electricity sales prediction model, due to the abnormal electricity sales data of some industries, these 

industries are not brought into this model. After eliminating the abnormal industries, the remaining industries are modeled and 

predicted. All current average forecast accuracy is about 94%. The specific distribution of industry forecast accuracy is depicted 

in table 6: 

Table 6. Distribution of industry forecast accuracy 

Accuracy Count Proportion (%) 

More than 95% 1122 72.15% 

90%-95% 238 15.31% 

Less than 90% 73 4.69% 

Not included in the model 122 7.85% 

Total 1555 100.00% 

 

Forecast accuracy of key industries 

Twelve key industries were selected according to the existing circumstances of industry in a province in China, and the forecast 

results are as follows in table 7. Herein the errors of feathers and its products, leather, footwear, and fur industry mainly come 

from a city in the province, after analysis, it is found that the trend of electricity sales is abnormal, and the accuracy can reach 

95.46% after excluding the data of this city. 

Table 7. Average accuracy table of key industries 

Industry Error Accuracy 

Feathers and their products, leather, fur, and footwear industry 0.1107568 88.92% 

Chemical fiber manufacturing industry 0.0586388 94.14% 

Metal products industry 0.0372169 96.28% 

Communications, manufacturing of computers, and other electronic equipment 0.0314198 96.86% 

Rubber and plastic products industry 0.0341399 96.59% 

Textile industry 0.0397362 96.03% 

Manufacture of non-metallic mineral products 0.0401938 95.98% 

Ferrous metal smelting and calendering processing industry 0.0763865 92.36% 

Farm and sideline food processing industry 0.0296712 97.03% 

Wood processing and wood, bamboo, rattan, palm, grass products industry 0.031945 96.81% 

Non-ferrous metal smelting and rolling processing industry 0.0530533 94.69% 

Chemical raw materials and chemical products manufacturing 0.0348428 96.52% 

Based on the analysis of the above experimental outcomes, it is apparent that the poor prediction accuracy of electricity sales in 

the industry mainly has the following reasons: 1) the historical data of electricity sales in the industry are basically missing; 2) 

Abnormal sudden increase or decrease of electricity sales trend in the industry; 3) The trend of industry electricity sales fluctuates 

greatly. 
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Prediction results of prefecture-level cities 

The forecast results of the prefecture and city come from the forecast of industry electricity sales. According to the summary of 

the prefecture and city, the research is divided into monthly and quarterly dimensions. 

Monthly forecast accuracy 

From the dimension of prefecture-level cities, taking the results of December 2022 as an example, the forecasting precision of 

electricity sales in various cities is basically above 90%, and some cities have large errors. The predicted precision of electricity 

sales by industry in 2022 is as follows in table 8: 

Table 8. Predicted precision table of electricity sales in certain cities in China in 2022 

Cities Real value Predicted value Accuracy 

A city 5602316498 5901210311 94.66% 

B city 1447550787 1513664867 95.43% 

C city 1426469129 1419300963 99.50% 

D city 2268863678 2292719537 98.95% 

E city 910086565 1077794127 81.57% 

F city 6857721124 7043096918 97.30% 

G city 1861809929 1561334615 83.86% 

H city 2065845769 2185792147 94.19% 

I city 1820036593 1916855375 94.68% 

 

Quarterly forecast accuracy 

Taking the results of the fourth quarter of 2022 as an example, the prediction accuracy of all cities is basically above 90%, and 

some cities have large errors. The predicted accuracy of electricity sales in cities of a certain province in China in the fourth 

quarter of 2022 is as follows in table 9: 

Table 9. Forecast accuracy table of electricity sales in cities of a province in China in the fourth quarter of 2022 

Cities Real value Predicted value Accuracy 

A city 1.79E+10 1.92E+10 92.64% 

B city 4.4E+09 3.99E+09 90.61% 

C city 4.25E+09 4.21E+09 99.02% 

D city 7.88E+09 7.96E+09 98.94% 

E city 3.09E+09 3.56E+09 84.75% 

F city 2.15E+10 2.17E+10 99.06% 

G city 5.6E+09 5.12E+09 91.29% 

H city 7E+09 7.53E+09 92.46% 

I city 7.79E+09 9.29E+09 80.73% 

 

The above experimental results show that the prediction of the regional power demand situational awareness method based on 

Stacking technology for the total electricity sales of a province in China reaches about 96%, and the average prediction accuracy 

for the total electricity sales of cities in a province in China reaches about 95%. Data problems such as sudden increases and 



Membrane Technology 
ISSN (online): 1873-4049 

248 Vol: 2024 | Iss: 5 | 2024 | © 2024 Membrane Technology 

decreases of electricity sales data in some industries and too many null values affect the predicted capacity. Therefore, the average 

predicted precision of the remaining industries is about 94% after eliminating the abnormal industries. After eliminating the data 

with obvious abnormal problems and then modeling and forecasting the remaining electricity consumption type data, the average 

prediction accuracy is about 87.4%. 

CONCLUSION 

This paper proposed the regional power demand situational awareness model, including the selection of variables, the selection 

of variables, the selection of base models, and the construction of the Stacking fusion model. Then based on the model, the 

empirical analysis was fulfilled on the data of a province in China. Moreover, the prediction outcomes demonstrate that this 

method achieves a high precision of 96% in predicting the total electricity sales of the province. However, there are still 

shortcomings to be improved. For example, the internal and external power, climate and economic index data collected in this 

paper have not been fully used, which can be collected into the database after data governance. After analysis, exploration, and 

development, the industrial power economic operation report and data interface can be formed, and more information can be 

mined and shared with the government and enterprises to help the government control the national development trend. In 

addition, it is necessary to further improve the adaptive ability of the power demand situation awareness model for policy factors 

and contingency events that affect the power demand situation, such as natural disasters. 
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